
On the security of ECDSA with additive key derivation and

presignatures

Jens Groth and Victor Shoup
DFINITY

April 27, 2022

Abstract

Two common variations of ECDSA signatures are additive key derivation and pres-
ignatures. Additive key derivation is a simple mechanism for deriving many subkeys
from a single master key, and is already widely used in cryptocurrency applications
with the Hierarchical Deterministic Wallet mechanism standardized in Bitcoin Improve-
ment Proposal 32 (BIP32). Because of its linear nature, additive key derivation is also
amenable to efficient implementation in the threshold setting. With presignatures, the
secret and public nonces used in the ECDSA signing algorithm are precomputed. In
the threshold setting, using presignatures along with other precomputed data allows for
an extremely efficient “online phase” of the protocol. Recent works have advocated for
both of these variations, sometimes combined together. However, somewhat surpris-
ingly, we are aware of no prior security proof for additive key derivation, let alone for
additive key derivation in combination with presignatures.

In this paper, we provide a thorough analysis of these variations, both in isolation
and in combination. Our analysis is in the generic group model (GGM). Importantly,
we do not modify ECDSA or weaken the standard notion of security in any way. Of
independent interest, we also present a version of the GGM that is specific to elliptic
curves. This EC-GGM better models some of the idiosyncrasies (such as the conversion
function and malleability) of ECDSA. In addition to this analysis, we report security
weaknesses in these variations that apparently have not been previously reported. For
example, we show that when both variations are combined, there is a cube-root attack on
ECDSA, which is much faster than the best known, square-root attack on plain ECDSA.
We also present two mitigations against these weaknesses: re-randomized presignatures
and homogeneous key derivation. Each of these mitigations is very lightweight, and
when used in combination, the security is essentially the same as that of plain ECDSA
(in the EC-GGM).

1 Introduction

Let us recall the basic ECDSA signature scheme [NIST13]. Let E be an elliptic curve
defined over Zp and generated by a point G of prime order q, and let E∗ be the set of
points (x, y) on the curve excluding the point at infinity O. The unreduced conversion
function C : E∗ → Zp maps a point P to its x-coordinate. The reduced conversion
function C̄ : E∗ → Zq maps a point P to the canonical representative of C(P) (i.e., an
integer in the range [0, p)) reduced mod q.

1

Sign message m:

h← Hash(m) ∈ Zq

r
$← Z∗

q , R ← rG ∈ E, t← C̄(R) ∈ Zq

if t = 0 or h+ td = 0 then return fail
s← r−1(h+ td)
return the signature (s, t)

Verify signature (s, t) ∈ Z∗
q × Z∗

q on m:

h← Hash(m) ∈ Zq

R ← s−1hG + s−1tD
check that R 6= O and C̄(R) = t

Figure 1: ECDSA signing and verification algorithms

The secret key for ECDSA is a random d ∈ Z∗q , the public key is D = dG ∈ E. The
scheme makes use of a hash function Hash : {0, 1}∗ → Zq. The signing and verification
algorithms are shown in Figure 1.

Note that the signing algorithm will fail with only negligible probability (as discussed
below in Section 3). Also note for a valid signature (s, t) on a message m, we have

h+ td = sr,

where h := Hash(m), or equivalently,

hG + tD = sR.

The security of ECDSA has only been analyzed in idealized models of computation.
Specifically, Brown [Bro02] showed that under standard intractability assumptions on Hash
(collision resistance and random/zero preimage resistance), ECDSA is secure in the generic
group model [Nec94, Sho97]. In addition, Fersch, Kiltz, and Pottering [FKP16] have also
showed that ECDSA is secure under somewhat different intractability assumptions on Hash
if the conversion function is modeled as an idealized function (but one that captures some
idiosyncrasies of the actual conversion function). In this paper, we will also analyze ECDSA
and several variants in the generic group model. However, we shall work in a specific version
of the generic group model that more accurately models some of the idiosyncrasies of elliptic
curves and the corresponding conversion function. We call this the elliptic curve generic
group model (EC-GGM), which may be of independent interest. By working in this
model, we overcome objections raised in [FKP16] and elsewhere [SPMS02] that Brown’s
analysis was incomplete. For example, it was pointed out that Brown’s analysis ruled out
any malleability in the signature scheme, whereas ECDSA signatures are in fact malleable.

Several variations of ECDSA have been proposed, notably additive key derivation
and presignatures. We are mainly interested in these variations because of the optimiza-
tions they enable in the threshold setting, where the signing functionality is implemented as
a secure distributed protocol by parties that each hold a share of the secret key. However,
these variations also enable optimizations in the single-signer setting as well.

Additive key derivation. With additive key derivation, the secret-key/public-key pair
(d,D) is viewed as a master key pair from which subkey pairs can be derived using a
simple additive shift. Specifically, we can derive a secret subkey of the form d+ e by using
a “tweak” e ∈ Zq. For such a derived secret subkey, we can compute the corresponding

2

derived public subkey from the public key D as D+eG. In the context of cryptocurrency, this
type of additive key derivation is used in so-called Hierarchical Deterministic Wallets
using the Bitcoin Improvement Proposal 32 (BIP32) standard [Wui20], which is a specific
way of deriving a tweak e via a chain of hashes applied to the public key and other public
data. Note that BIP32 also specifies so-called “hardened” subkeys, which derives subkeys
using the secret key — we do not consider such “hardened” subkeys in this paper.

There is a cost to storing secret keys, and additive key derivation is useful in reducing
that cost, since it allows several distinct public keys to be used while only having to store
a single secret key. This secret-key storage cost manifests itself in both the threshold and
non-threshold settings. In the non-threshold setting, there is the obvious cost of maintaining
the secret key in some kind of secure storage. In the threshold setting, there is the cost
of running the key generation algorithm and storing secret shares in some kind of secure
storage. There may be additional costs in the threshold setting: for example, the cost
of resharing the secret key periodically, both to provide proactive security and to allow
for dynamic changes in the share-holder membership. Because of the linearity of the key
derivation, implementing additive key derivation in the threshold setting comes at essentially
no cost.

Unfortunately, and somewhat surprisingly, we are aware of no prior proofs of security
for ECDSA with additive key derivation. While [YY19] purports to present such a proof
(via a direct reduction to the security of ECDSA), their proof seems to be fundamentally
flawed: their simulator apparently needs to “reprogram” a random oracle that has already
been “programmed”. The more recent work [DEF+21] analyzes additive key derivation with
respect to a variant of ECDSA in which the derived public key is prepended to the message
to be signed, and with a restricted attack model in which an attacker is only allowed to ask
for one signature per message and derived public key.

Presignatures. In the signing algorithm, the values r andR := rG are independent of the
message to be signed (or the tweak), and so they can be precomputed in advance of an actual
signing request. In the threshold setting, it is tempting to not only precompute a sharing
of r, but to also to precompute R itself. This can greatly simplify the online signing phase
of the protocol. Indeed, several papers, including [DJN+20] and [GG20] present protocols
that use presignatures. Moreover, [DJN+20] advocates for the combination of presignatures
and additive key derivation, even though the security of additive key derivation, let alone
additive key derivation in combination with presignatures, has never been analyzed.

The paper [CMP20] does consider the security of presignatures (in isolation). They give
an explicit definition and they briefly sketch a proof of security in the GGM with Hash
also modeled as a random oracle. (an earlier version of [CMP20] had an incorrect security
bound).

1.1 Our contributions

1.1.1 Security proofs

We carry out a careful and detailed security analysis of ECDSA and several variants, in-
cluding ECDSA with additive key derivation, ECDSA with presignatures, and ECDSA with
both additive key derivation and presignatures. This analysis is done in the generic group

3

model (more precisely, the EC-GGM) under concrete assumptions for the hash function
Hash. Importantly, we do not modify ECDSA or weaken the standard notion of security in
any way. Unlike [CMP20], we do not model Hash as a random oracle, and we give precise
security bounds. Our analysis carries over immediately to any threshold implementation of
ECDSA whose security reduces to that of the non-threshold scheme (which is typically the
case).

For additive key derivation, we mainly assume that the set E of all valid tweaks is
not too large and is determined in advance. In practice (such as with BIP32), tweaks are
derived, via a hash, from identifiers (possibly combined with a “root” public key). This
assumption on E can be justified if the set of valid identifiers, and in particular, the set of
identifiers with respect to which we are concerned about forgeries, is indeed small. It can
also be further justified by modeling the hash function used to derive tweaks as a random
oracle. That said, our analysis also works without this assumption, and we describe how
our security results can be stated in terms of concrete security properties of the hash used
to derive the tweaks. In Appendix D we provide an analysis of the BIP32 key derivation
function, which justifies modeling it as a (public use) random oracle.

1.1.2 Attacks

While we are able to prove security results under reasonable assumptions for all of the
variations listed above, in the course of our analysis, we discovered that the concrete security
of some of these variants is substantially worse than plain ECDSA.

An attack on ECDSA with additive key derivation and presignatures. For ex-
ample, consider ECDSA with both additive key derivation and presignatures. Consider the
following attack:

1. Make one presignature query to get the group element R and let t := C̄(R).

2. Find m, e,m∗, e∗ such that h + te = h∗ + te∗, where e 6= e∗ and h := Hash(m) and
h∗ := Hash(m∗)

3. Ask for a signature (s, t) using this presignature on message m with tweak e.

Then we have

R = s−1hG + s−1t(D + eG)

= s−1(h+ te)G + s−1tD
= s−1(h∗ + te∗)G + s−1tD
= s−1h∗G + s−1t(D + e∗G),

which means that (s, t) is also a valid signature on m∗ with respect to e∗.
Also observe that Step 2 above is essentially a 4-sum problem of the type studied by

Wagner [Wag02] and others [BLN+09, NS15]. Indeed, Wagner’s algorithm allows us to
implement Step 2 in time significantly less than O(q1/2) if the set E is sufficiently large. In
particular, if |E| = Θ(q1/3), then we can solve this 4-sum problem and forge a signature

4

in time roughly O(q1/3). While not a polynomial-time attack, this is clearly a much more
efficient attack than the best-known attack on plain ECDSA, which runs in time roughly
O(q1/2).

An attack on ECDSA with presignatures. Even with presignatures alone, ECDSA
has potential security weaknesses that plain ECDSA does not. Consider the following
attack:

1. Make one presignature query to get the group element R and let t := C̄(R).

2. Compute R∗ ← cR for some c ∈ Z∗q and let t∗ := C̄(R∗).

3. Find m,m∗ such that h/t = h∗/t∗, where h := Hash(m) and h∗ := Hash(m∗) and
m 6= m∗.

4. Ask for a signature (s, t) using the presignature with group element R on message m.

5. Compute s∗ satisfying (s∗)−1t∗ = cs−1t, and output (s∗, t∗).

We have

R = s−1hG + s−1tD.

Moreover,

R∗ = cR = cs−1hG + cs−1tD
= cs−1t(h/t)G + cs−1tD
= (s∗)−1t∗(h/t)G + (s∗)−1t∗D
= (s∗)−1t∗(h∗/t∗)G + (s∗)−1t∗D
= (s∗)−1h∗G + (s∗)−1t∗D,

which means that (s∗, t∗) is a valid signature on m∗.
To implement Step 3, for fixed t and t∗, there is no obvious way to find h, h∗ satisfying

h/t = h∗/t∗ in time faster than O(q1/2). However, the inability to do so requires an
assumption on Hash that is not needed for plain ECDSA. Moreover, it is clear that ECDSA
with presignatures is completely insecure if we allow a “raw” signing oracle, i.e., a signing
oracle that takes as input the purported hash h rather than the message m. There are
settings where allowing such “raw” signing queries may be useful (e,g., in a remote signing
service to avoid the cost of message transmission), and plain ECDSA is secure in the EC-
GGM even with raw signing queries.

Note that one could extend the above attack so that the attack iterates Steps 3 and 4 for
many values of c. This would give us an attack that is essentially a multiplicative variant
of a 3-sum problem, for which there is no known algorithm that runs in time O(q1−ε) for
any ε > 0 [NS15]. However, this is again an attack vector that is not available for plain
ECDSA.

5

1.1.3 Mitigations

In addition to the analysis and attacks discussed above, we introduce several mitigations.

Re-randomized presignatures. A presignature of the form r′ ∈ Zq and R′ := r′G ∈ E
is computed as before. However, when a signing request is made, the actual presignature
used is r := r′+δ and R := R′+δG, where δ ∈ Zq is a public value that is pseudo-randomly
generated at the time of the signing request (the key property is that δ is not predictable).
This mitigation may be deployed both with and without additive key derivation.

We prove much stronger security results with this mitigation. Specifically, we prove
a security result for re-randomized presignatures without additive key derivation that is
essentially equivalent to the security result for plain ECDSA. With additive key derivation,
the concrete security degrades by a factor of |E|, where E is the set of valid tweaks, but the
resulting scheme is no longer vulnerable to the 4-sum attack described above. Both with
and without additive key derivation, we can also prove security even with respect to a raw
signing oracle.

We are mainly interested in the use of re-randomized presignatures in the threshold
setting. Since the re-randomization is linear, in terms of working with linear secret sharing,
the impact is negligible (computing (r′ + δ)−1 in the threshold setting is no harder than
computing r−1, assuming one is using standard techniques, such as [BB89]). However, the
parties will still need access to a source of public randomness to generate δ. Accessing this
public randomness may or may not introduce some extra latency, depending on details of
the system. For example, in the Internet Computer (IC) [DFI22] that motivated our work
there is already a mechanism for accessing public, unpredictable randomness via a “random
tape” (which is implemented using a threshold BLS signature [BLS01]). Moreover, in the IC
architecture, when a subprotocol (such as a threshold ECDSA signing protocol) is launched,
we can access this public randomness with no additional latency.

Instead of generating δ at the time of the signing request, as an alternative approach,
one might also derive δ from a hash applied to (among other things) the public key, the
(hash of) the message to be signed, and (if using additive key derivation) the tweak. This
approach for re-randomizing presignatures comes at essentially no cost, either in terms of
computation or latency. However, while it heuristically appears to offer more security than
plain presignatures, and in particular foils the 4-sum attack described above, we have not
formally analyzed the security of this approach.

Homogeneous key derivation. We also propose an alternative additive key derivation
mechanism with better security properties. The master secret key now consists of a ran-
domly chosen pair (d, d′) ∈ Zq × Zq. The corresponding master public key is

(D,D′) := (dG, d′G).

Given a tweak e ∈ Zq, the derived secret key is d+ed′, and the derived public key is D+eD′.
Clearly, just as for additive key derivation, we can easily derive a public key from the

master public key. Moreover, since key derivation is linear, implementing homogeneous key
derivation in the threshold setting comes at very little cost. Compared to additive key

6

no presigs presigs re-randomized presigs

no derivation Ecr +NErpr + Ezpr +N2/q Ecr + UNErpr +NErr +

Ezpr +N2/q

Ecr +NErpr + Ezpr +N2/q

additive Ecr+N |E|Erpr+Ezpr+N2/q Ecr + UN |E|Erpr +
Npsig E4sum1 +NE4sum2 +

Ezpr +N2/q

Ecr+N |E|Erpr+Ezpr+N2/q

homogeneous Ecr +NErpr + Ezpr +N2/q Ecr + UNErpr +NErr +

Ezpr +N2/q

Ecr +NErpr + Ezpr +N2/q

Table 1: Summary of concrete security theorems

derivation, the only downsides are (1) some small additional computational and commu-
nication complexities, and (2) the lack of compatibility with existing standards, such as
BIP32.

One can combine homogeneous key derivation with either plain ECDSA, ECDSA with
presignatures, and ECDSA with re-randomized presignatures. We give security proofs for
all three of these variations. The upshot is that with homogeneous key derivation, for each
variation, we get a security result for that variation with homogeneous key derivation that
is essentially equivalent to that variation without key derivation. In particular, unlike with
additive key derivation, our security results do not degrade linearly with |E| , where E is the
set of valid tweaks, and we do not need to insist that the set E is determined in advance.
In particular, we may just assume that the tweaks are derived by a collision resistant hash.

1.1.4 Summary of concrete security bounds

Table 1 summarizes our concrete security theorems. Each table entry gives an upper bound
on an adversary’s success in producing a forgery (ignoring small constants) in the EC-GCM
(and in the PDF file, each table entry also contains a hyperlink to the actual theorem).
These upper bounds are stated in terms of:

• q: the order of the group E;

• N : the number of oracle queries (group, signing, or presignature);

• Npsig: the number of presignature requests;

• U : the maximum number of unused presignature requests outstanding at any point
in time;

• |E|: the size of the set of valid tweaks;

• Ecr: the probability of successfully finding a collision in Hash;

• Erpr: the probability of successfully finding a preimage under Hash of a random ele-
ment in Zq;

• Ezpr: the probability of successfully finding a preimage under Hash of 0;

7

• Err: the probability, given random ρ ∈ Z∗q , of finding m,m∗ such that h/h∗ = ρ, where
h := Hash(m) and h∗ := Hash(m∗) 6= 0;

• E4sum1: the probability, given random t ∈ Zq, of successfully finding m, e,m∗, e∗ such
that h+ te = h∗+ te∗, where e, e∗ ∈ E, e 6= e∗ and h := Hash(m) and h∗ := Hash(m∗);

• E4sum2: the probability of successfully findingm, e,m∗, e∗ such that h/t+e = h∗/t∗+e∗,
where e, e∗ ∈ E, h := Hash(m), h∗ := Hash(m∗) 6= 0, where t ∈ Z∗q is selected by the
adversary from one of several random samples, and t∗ ∈ Z∗q is a random value given
after t is selected.

The success probabilities Ecr, Erpr, Ezpr, Err, E4sum1, E4sum2 are stated in terms of an adversary
whose running time is essentially that of the forging adversary (or that time plus UN , in
either of the presignature settings). Also, the symbol in the table indicates that this
mode of operation is insecure with “raw” signing, i.e., with pre-signatures the adversary can
forge if she can make signature queries directly on h instead of m, while the other variations
permit raw signatures.

We make some quick observations about this table. First, observe that the first and
third rows are identical, as are the first and third columns. Second, we see that the best
security bounds are in the upper left cell and the lower right cell, and these bounds are the
same — this suggests that ECDSA with homogeneous key derivation and re-randomized
presignatures is just as secure as plain ECDSA. Third, we see that the worst security result
is in the middle cell, corresponding to the setting of additive key derivation combined with
(non-re-randomized) presignatures; moreover, this is not just a case of sloppy analysis, as
we have already seen that in this setting, there is an actual attack that produces a forgery
in time significantly faster than O(q1/2). Finally, we see that “raw” signing is insecure for
all modes of operation in the middle column. Each other mode are secure even with “raw”
signing, meaning that the mode is just as secure if the signing algorithm is given an arbitrary
hash value h ∈ Zq (not necessarily the output of Hash) and, in the case of key derivation,
and arbitrary tweak e ∈ Zq (not necessarily in E or satisfying any other constraint).

As we shall observe, all of our security proofs for the unforgeability of ECDSA and all
of its variants also prove a stronger notion of security, which we call strong unforgeability
up to sign. See Section 4.1.1 for more details.

2 The EC-GGM

We propose the following elliptic curve generic group model (EC-GGM).
We assume an elliptic curve E is defined by an equation y2 = F (x) over Zp and that

the curve contains q points including the point at infinity O. Here, p and q are odd primes.
Let E∗ be the set of non-zero points (excluding the point at infinity) on the curve, i.e.,
(x, y) ∈ Zp × Zp that satisfy y2 = F (x). From now on, we shall not be making any use of
the usual group law for E, but simply treat E as a set; however, for a point P = (x, y) ∈ E∗,
we write −P to denote the point (x,−y) ∈ E∗. Note that because we are assuming q is
prime, there are no points of the form (x, 0) ∈ E (these would be points of order 2 under
the usual group law).

8

An encoding function for E is a function

π : Zq 7→ E

that is

• injective,

• identity preserving, meaning that π(0) = O, and

• inverse preserving, meaning that for all i ∈ Zq, π(−i) = −π(i).

In the EC-GGM, parties know E and interact with a group oracle Ogrp that works as
follows:

• Ogrp on initialization chooses an encoding function π at random from the set of all
encoding functions

• Ogrp responds to two types of queries:

– (map, i), where i ∈ Zq:
∗ return π(i)

– (add,P1,P2), where P1,P2 ∈ E:

∗ return π
(
π−1(P1) + π−1(P2))

NOTES:

1. The intuition is that the random choice of encoding function hides relations between
group elements.

2. However, to make things more realistic in terms of the ECDSA conversion function,
the encodings themselves have the same format as in a concrete elliptic curve, even
though we do not at all use the group law of an elliptic curve.

3. Also to make things more realistic, the trivial relationship between a point and its
inverse (that they share the same x-coordinate) is preserved.

4. Our model only captures the situation of elliptic curves over Zp of prime order and
cofactor 1. This is sufficient for many settings, and it covers all of the “secp” curves
in [Cer10].

5. It would be possible to extend the model to elliptic curves of non-prime order as well,
in which case the domain of the encoding function π would have to be adjusted to
match the structure of the group.

9

3 Properties of the ECDSA conversion function

For a random variable T taking values in some finite set X, we define its guessing proba-
bility to be

max {Pr[T = x] : x ∈ X} .

Recall again the ECDSA signature scheme as described in Section 1 and Figure 1. The
unreduced conversion function C : E∗ → Zp is a 2-to-1 map (recall that there are no points
of the form (x, 0) ∈ E). Therefore, the distribution of C(R), for random R ∈ E∗, is
uniform over a subset of Zp of size (q−1)/2. In particular, the guessing probability of C(R)
is 2/(q − 1).

Hasse’s theorem says that q − 1 = p + 2θp1/2 for some θ ∈ [−1, 1]. This implies that
for p ≥ 13, we have p/2 ≤ q ≤ 2p. We shall implicitly assume this from now on. The
bound p ≤ 2q and the fact that C is 2-to-1 imply that every element of Zq has at most
four preimages under the reduced conversion function C̄ : E∗ → Zq; therefore, the guessing
probability of t := C̄(R) is at most 4/(q − 1). The ECDSA signing algorithm fails if t = 0
or h+ td = 0. Thus, the probability that the signing algorithm fails is at most 8/(q − 1).

Hasse’s theorem also implies that the probability that x ∈ C(E∗), for random x ∈ Zp,
is equal to 1/2 + θp−1/2. We can use this to design an efficient probabilistic sampling
algorithm Samp, which takes as input t ∈ Zq and returns either fail or a point R ∈
C̄−1(t), with the following properties:

• For randomly chosen t ∈ Zq, we have

Pr[Samp(t) = fail] ≤ 3
4 + 1

2p
−1/2.

• For randomly chosen t ∈ Zq, the conditional distribution of Samp(t), given that
Samp(t) 6= fail, is uniform over E∗.

The algorithm works as follows:

1. Let t′ ∈ Z be the canonical representative of t in the interval [0, q). (Assume t is
uniform over Zq. t′ is uniform over {0, . . . , q − 1}.)

2. If q < p, then with probability 1/2 add q to t′. (t′ is uniform over an interval
{0, . . . , u− 1}, where p ≤ u ≤ 2p.)

3. If t′ ≥ p then return fail. (Failure occurs with probability at most 1/2; otherwise, t′

is uniform over {0, . . . , p− 1}.)

4. Set x← [t′ mod p] ∈ Zp. (x is uniform over Zp.)

5. If F (x) is not a square, return fail. (Failure occurs with probability 1/2− θp−1/2.)

6. Choose a random square root y of F (x) and return R := (x, y). (R is uniform over
E∗.)

10

4 Notions of security

4.1 Signature schemes

Definition 1 (CMA security). For a signature scheme S and an adversary A, we denote
by CMAadv[A,S] the advantage that A has in forging a signature in a chosen message attack
against S. This is the probability that A wins the following game.

• The challenger runs the key generation algorithm for S to obtain a public key pk and
a secret key sk and gives pk to A.

• A makes a sequence of signing requests to the challenger. Each such request is a
message m, which the challenger signs using sk, giving the resulting signature σ to A.

• At the end of the game, A outputs (m∗, σ∗).

• We say A wins the game if σ∗ is a valid signature on m∗ under pk, and m∗ was
not submitted as a signing request.

Definition 2 (CMA security in GGM). If S is based on computations in a certain
group, we can also model such a CMA attack in the generic group model, in which all
computations in the group done by A and the challenger are performed using the group
oracle as described in Section 2. In this case, A’s advantage in the corresponding CMA
attack game is denoted CMAggmadv[A,S].

4.1.1 Strong unforgeability

In some settings, the stronger security notion known as strong unforgeability is desirable.
This notion of security means that not only is it hard to construct a valid signature on a
message for which no signing request was issued, it is also hard to construct a valid signature
on a message other than one that is identical to the response to some signing request on
that same message.

It is well known that ECDSA is trivially not strongly unforgeable. Indeed, given a valid
signature (s, t) on a message m, then (−s, t) is also a valid signature on m. To see this,
suppose sR = hG + tD, where h = Hash(m) and t = C̄(R). Then C̄(R) = C̄(−R) and
(−s)(−R) = hG + tD. We say that the signatures (s, t) and (−s, t) are equivalent up
to sign, and we we say that ECDSA is strongly unforgeable up to sign if it is hard
to construct a valid signature on a message other than one that is equivalent up to sign
to the response to some signing request on that same message. As we shall observe, all of
our security proofs for the unforgeability of ECDSA and all of its variants also prove strong
unforgeability up to sign.

Strong unforgeability up to sign implies that ECDSA can be trivially converted to a
strongly secure signature scheme, simply by requiring that a valid signature (s, t) satisfies
s ∈ {[a]q : 1 ≤ a < q/2}, where [·]q is the natural map from Z to Zq, and by having the
signature algorithm choose the unique valid signature among (±s, t).

11

4.2 Hash functions

Definition 3 (Random-preimage resistance). Let Hash be a hash function whose output
space is Zq. Let A be an adversary. We define RPRadv[A,Hash] to be the advantage of A
in breaking the random-preimage resistance of Hash. This is defined as the probability
that A wins the following game.

• The challenger chooses h ∈ Zq uniformly at random and gives h to A.

• A outputs m.

• We say A wins the game if Hash(m) = h.

Definition 4 (Zero-preimage resistance). Let Hash be a hash function whose output
space is Zq. Let A be an adversary. We define ZPRadv[A,Hash] to be the advantage of A
in breaking the zero-preimage resistance of Hash. This is defined as the probability that
A wins the following game.

• A outputs m.

• We say A wins the game if Hash(m) = 0.

Note that the probability of winning in this game is taken over the random choices of A as
well as any random choices made in generating system parameters that define Hash.

Definition 5 (Collision resistance). Let Hash be a hash function. Let A be an adversary.
We define CRadv[A,Hash] to be the advantage of A in breaking the collision resistance
of Hash. This is defined as the probability that A wins the following game.

• A outputs m,m′.

• We say A wins the game if Hash(m) = Hash(m′) but m 6= m′.

Note that the probability of winning in this game is taken over the random choices of A as
well as any random choices made in generating system parameters that define Hash.

5 Proof of security of ECDSA in the EC-GGM

In the EC-GGM model, the generator G is encoded as π(1) and the public key D is encoded
as π(d) for randomly chosen d ∈ Z∗q . We assume that d 6= 0. These encodings of G and D
are given to the adversary at the start of the signing attack game.

The adversary then interacts makes a sequence of queries to both the group and signing
oracles. The signing oracle on a message m itself works as usual, computing

h = Hash(m),

but it uses the group oracle to compute the encoding of

R = rG.

12

1. Initialization:

(a) π ← {(0,O)}.
(b) d

$← Z∗q
(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;

while P ∈ Range(π) do: P $← E∗

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

while i ∈ Domain(π) do: i
$← Z∗q

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1)+π−1(P2)) and re-
turn the result

4. To process a request to sign m:

(a) h← Hash(m) ∈ Zq

(b) r
$← Z∗q

(c) invoke (map, r) to get R
(d) t← C̄(R) ∈ Zq

(e) if t = 0 then return fail

(f) if h+ td = 0 then return fail

(g) s← r−1(h+ td)

(h) return (R, s, t)

Figure 2: Lazy-Sim

Note that we have
R = s−1hG + s−1tD,

where (s, t) is the signature. For simplicity, let us assume that R is output by the signing
oracle as well.

At the end of the signing attack game, the adversary outputs a forgery (s∗, t∗) on a
message m∗. The signature is then verified using the verification algorithm, computing

h∗ = Hash(m∗),

and then again making use of the group oracle to compute the encoding of

R∗ = (s∗)−1h∗G + (s∗)−1t∗D.

We define three types of forgers.

Type I. R∗ = ±R for some R computed by the signing oracle.

Type II. R∗ 6= ±R for any R computed by the signing oracle, and h∗ 6= 0.

Type III. Neither Type I or Type II.

5.1 A lazy simulation of the signature attack game

Instead of choosing the encoding function π at random at the beginning of the attack game,
we can lazily construct π a bit at a time. That is, we represent π as a set of pairs (i,P)
which grows over time — such a pair (i,P) represents the relation π(i) = P. Here, we give
the entire logic for both the group and signing oracles in the forgery attack game. Figure 2
gives the details of Lazy-Sim.

At the end of the attack game, the adversary will output a forgery (s∗, t∗) on a message
m∗. The verification routine will be used to verify this signature, and this will use the

13

1. Initialization:

(a) π ← {(0,O)}.
(b) invoke (map, 1) to obtain G
(c) invoke (map, D) to obtain D
(d) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;
if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1)+π−1(P2)) and re-
turn the result

4. To process a request to sign m:

(a) h← Hash(m) ∈ Zq

(b) R $← E∗

(c) if R ∈ Range(π) then abort

(d) t← C̄(R) ∈ Zq

(e) if t = 0 then abort

(f) s
$← Z∗q

(g) r ← s−1(h+ tD)

(h) if r ∈ Domain(π) then abort

(i) add (−r,−R) and (r,R) to π

(j) return (R, s, t)

Figure 3: Symbolic-Sim

add queries to perform the computation, which will take O(log q) group oracle queries. We
denote by Ngrp the total number of group oracle queries explicitly made by the adversary,
with the understanding that this includes the group oracle queries used to verify the the
forgery, as well as the group oracle queries used to generate G and D, but not including
group oracle queries used in the signing queries. We let Nsig denote the number of signing
queries made by the adversary, and set N := Nsig +Ngrp.

This lazy simulation is perfectly faithful. Specifically, the advantage of any adversary
in the signature attack game using this lazy simulation of the group oracle is identical to
that using the group oracle as originally defined.

5.2 A symbolic simulation of the signature attack game

We now define a symbolic simulation of the attack game. The essential difference in this
game is that Domain(π) will now consist of polynomials of the form a+ bD, where a, b ∈ Zq
and D is an indeterminant. Here, D symbolically represents the value of d. Note that π will
otherwise still satisfy all of the requirements of an encoding function. Figure 3 gives the
details of Symbolic-Sym.

Lemma 1. The difference between the adversary’s forging advantage in the Lazy-Sim and
Symbolic-Sim games (as described in Sections 5.1 and 5.2) is O(N2/q).

Proof. See Appendix A.

5.3 Security analysis of ECDSA against a symbolic simulator

We now analyze the security of ECDSA in the EC-GGM. We assume here that the attack
is taking place with respect to the symbolic simulator (see Section 5.2).

14

Type I forger. Now consider a Type I forger, where R∗ = ±R for some R produced by
the signing oracle (which must be unique). This means

(s∗)−1(h∗ + t∗D) = ±s−1(h+ tD) and t∗ = t.

In other words, for η ∈ {±1}, we have

(s∗)−1(h∗ + tD) = ηs−1(h+ tD),

which gives us the two equations

(s∗)−1h∗ = ηs−1h and (s∗)−1t = ηs−1t.

These two equations imply h∗ = h, which implies a collision on the hash function Hash.
So we have shown: if A is an efficient adversary that produces a Type I forgery with

probability εI, then there is an efficient adversary BI such that

CRadv[BI,Hash] ≥ εI.

The running time of BI is essentially the same as that of A.

Type II forger. Now consider a Type II forger, where R∗ 6= ±R for any R produced by
the signing oracle. Suppose

π−1(R∗) = a+ bD.

By the verification equation, we also have

π−1(R∗) = (s∗)−1(h∗ + t∗D).

Thus, we have
a = (s∗)−1h∗ and b = (s∗)−1t∗.

These identities, along with the assumption that h∗ 6= 0, imply that b 6= 0, a 6= 0, and

t∗ = h∗a−1b.

The group element R∗ must have been generated at random by some group oracle query
made directly by the adversary (this follows from the fact that b 6= 0). Since the coefficients
a, b were already determined before this query, it follows that the value of R∗ is independent
of these coefficients.

We want to use this Type II forger to break the random-preimage resistance of Hash.
That is, we are given random h† ∈ Zq and want to find a preimage of h† under Hash. To do
this, we will guess the group oracle query that will produce the value R∗ in the forgery,
and then we will run our sampling algorithm to compute

t† ← h†a−1b, R† $← Samp(t†).

If the sampler fails, then we abort. Otherwise, we set R∗ := R† and t∗ := t† and proceed
as usual: if the adversary forges a signature, we succeed in finding a preimage of h†.

So we have shown: if A is an efficient adversary that makes at most N signing or group
queries, and which produces a Type II forgery with probability εII, then there is an efficient
adversary BII such that

RPRadv[BII,Hash] ≥ 1/4 + o(1)

N
εII.

The running time of BII is essentially the same as that of A.

15

Type III forger. A Type III forger produces a forgery with h∗ = 0. We rule this out by
simply assuming that it is hard to find a preimage of 0 under Hash.

So we have shown: if A is an efficient adversary that produces a Type III forgery with
probability εIII, then there is an efficient adversary BIII such that

ZPRadv[BIII,Hash] ≥ εIII.

The running time of BIII is essentially the same as that of A.
Putting this all together with Lemma 1, we obtain:

Theorem 1. Let A be an adversary attacking Secdsa as in Definition 2 that makes at most
N signing or group queries. Then there exist adversaries BI, BII, and BIII, whose running
times are essentially the same as A, such that

CMAggmadv[A,Secdsa] ≤ CRadv[BI,Hash] +

(4 + o(1))N · RPRadv[BII,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. Applying Lemma 1, we have

CMAggmadv[A,Secdsa] ≤ εI + εII + εIII +O(N2/q).

The rest follows from the arguments made above.

NOTES:

1. All three assumptions we make — collision resistance, random-preimage resistance,
and zero-preimage resistance — are necessary conditions, in the sense that it is trivial
to break the scheme if any of them are false.

2. The above analysis shows that ECDSA is secure under the same assumptions, even
if we give the adversary access to a “raw” signing oracle, where the input is h, not
m. Of course, in this model, the notion of a forgery must be modified appropriately,
to disallow forgery on any message m∗ for which H(m∗) was submitted as a “raw”
signing query.

3. It is easy to see that the result of Theorem 1 applies equally well to strong unforgeability
up to sign (see Section 4.1.1). Indeed, the only place in the proof where we explicitly
used the assumption thatm∗ was not submitted as a signing request was in the analysis
of a Type I forgery, where R∗ = ±R for some R produced by the signing oracle on
input m. We then used the fact that h∗ = h but m∗ 6= m to break the collision
resistance of Hash. However, if m∗ = m, then the fact that R∗ = ±R implies that
(s∗, t∗) is equivalent up to sign to the signature (s, t) produced by the signing oracle.
Therefore, the signature (s∗, t∗) is not a forgery in the sense of strong unforgeability
up to sign.

16

6 ECDSA with additive key derivation

We assume that the secret key d ∈ Zp is used as a master key to derive secret subkeys of
the form d+ e for a “tweak” e ∈ Zq. For such a derived secret subkey, we can compute the
corresponding derived public subkey from the public key D as D + eG.

As we will see, it is impossible to achieve security without some restriction on the choice
of tweaks. We assume that any tweak must come from a set E ⊆ Zq of allowed tweaks that
is chosen before the attack game starts. This can be enforced in several ways, one of which
is to obtain tweaks as the output of a hash function which is modeled as a random oracle.
In Appendix D we provide an analysis of the BIP32 key derivation function, which justifies
modeling it as a (public use) random oracle. As we will see, security will degrade linearly
in |E|. In Section 6.1, we provide an alternative analysis in terms of concrete security
properties of the hash function used to derive tweaks.

The CMA security game in Definition 1 (as well as Definition 2) is modified so that the
signing oracle takes a message m and a tweak e. Similarly, the adversary must output a
forgery on a specific message m∗ under specific tweak e∗, and the forgery only counts if the
pair (m∗, e∗) was not given to the signing oracle.

We define CMAggm
akd adv[A,S,E] to be adversary A’s advantage in winning this modified

CMA game in the EC-GGM.
Lemma 1 is seen to hold as well in this setting, where to process a signing query (h, e),

the symbolic simulator runs the same algorithm as before, but with e+ D in place of D.
We now analyze the security of ECDSA in this setting, assuming a symbolic simulator,

just as we did in Section 5.3

Type I forger. Consider a Type I forger, where R∗ = ±R for some R produced by the
signing oracle (which must be unique). This means

(s∗)−1(h∗ + t∗(e∗ + D)) = ±s−1(h+ t(e+ D)) and t∗ = t.

In other words, for η ∈ {±1}, we have

(s∗)−1(h∗ + te∗ + tD) = ηs−1(h+ te+ tD),

which gives us the two equations

(s∗)−1(h∗ + te∗) = ηs−1(h+ te) and (s∗)−1t = ηs−1t.

These two equations imply
h∗ + te∗ = h+ te. (1)

If e∗ = e, then we have h∗ = h, and so we can use the forging adversary to break the
collision resistance of Hash as before. Let us call this a Type Ia forgery.

Otherwise, we have

t =
h∗ − h
e− e∗

.

Let us call this a Type Ib forgery. We want to use this Type Ib forger to break the
random-preimage resistance of Hash. That is, we are given random h† ∈ Zq and want to

17

find a preimage of h† under Hash. To do this, we will guess the relevant signing query
and the tweak e∗. We then we will run our sampling algorithm to compute

t† ← h† − h
e− e∗

, R† $← Samp(t†).

If the sampler fails, then our forger fails. Otherwise, we set R := R† and t := t† and proceed
as usual: if the adversary forges a signature, we succeed in finding a preimage of h†.

So we have shown:

• If A is an efficient adversary that produces a Type Ia forgery with probability εIa,
then there is an efficient adversary BIa such that

CRadv[BIa,Hash] ≥ εIa.

The running time of BIa is essentially the same as that of A.

• If A is an efficient adversary that makes at most Nsig signing queries, and which
produces a Type Ib forgery with probability εIb, then there is an efficient adversary
BIb such that finding advantage for Hash is at least

RPRadv[BIb,Hash] ≥ 1/4 + o(1)

Nsig|E|
εIb.

The running time of BIb is essentially the same as that of A.

NOTES:

1. Security really does degrade as |E| gets large. In particular, if |E| = Θ(q1/2), then
for fixed h, t, and e, an adversary can expect to find (h∗, e∗) 6= (h, e) satisfying (1) in
time O(q1/2), which is enough to forge a signature.

Type II forger. Now consider a Type II forger playing against our symbolic simulator,
where R∗ 6= ±R for any R produced by the signing oracle. Suppose

π−1(R∗) = a+ bD.

By the verification equation, we also have

π−1(R∗) = (s∗)−1(h∗ + t∗(e∗ + D)).

Thus, we have
a = (s∗)−1(h∗ + t∗e∗) and b = (s∗)−1t∗.

These identities, along with the assumption that h∗ 6= 0, imply b 6= 0, a− be∗ 6= 0, and

t∗ =
bh∗

a− be∗
. (2)

The group element R∗ must have been generated at random by some group oracle query
made directly by the adversary (this follows from the fact that b 6= 0). Since the coefficients

18

a, b were already determined before this query, it follows that the value of R∗ is independent
of these coefficients.

We want to use this Type II forger to break the random-preimage resistance of Hash.
That is, we are given random h† ∈ Zq and want to find a preimage of h† under Hash. To
do this, we will guess the relevant group oracle query that will produce the value
R∗ in the forgery, as well as the tweak e∗. Then we will run our sampling algorithm
to compute

t† ← bh†

a− be∗
, R† $← Samp(t†).

If the sampler fails, then our forger fails. Otherwise, we set R∗ := R† and t∗ := t† and
proceed as usual: if the adversary forges a signature, we succeed in finding a preimage of
h†.

So we have shown: if A is an efficient adversary that makes at most N signing or group
queries, and which produces a Type II forgery with probability εII, then there is an efficient
adversary BII such that

RPRadv[BII,Hash] ≥ 1/4 + o(1)

N |E|
εII.

The running time of BII is essentially the same as that of A.

NOTES:

1. Again, security really does degrade as |E| gets large. In particular, if |E| = Θ(q1/2),
then for fixed a, b, and t∗, an adversary can expect to find (h∗, e∗) satisfying (2) in
time O(q1/2), which is enough to forge a signature.

Type III forger. As above, a Type III forgery gives us a forgery with h∗ = 0. We rule
this out by simply assuming that it is hard to find a preimage of 0 under Hash.

Theorem 2. Let A be an adversary attacking Secdsa as in Definition 2 with additive
key derivation that makes at most N signing or group queries, of which Nsig are signing
queries. Then there exist adversaries BIa, BIb, BII, and BIII, whose running times are
essentially the same as A, such that

CMAggm
akd adv[A,Secdsa,E] ≤ CRadv[BIa,Hash] +

(4 + o(1))Nsig|E| · RPRadv[BIb,Hash] +

(4 + o(1))N |E| · RPRadv[BII,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. Applying Lemma 1, adapted to additive key derivation, we have

CMAggmadv[A,Secdsa] ≤ εIa + εIb + εII + εIII +O(N2/q).

The rest follows from the arguments made above.

19

NOTES:

1. This analysis also shows that ECDSA with additive key derivation is secure under
the same assumptions, even if we give the adversary access to a “raw” signing oracle,
where the input is h, not m. It even remains secure if the signing tweak e is not
constrained to lie in the set E. It is really only the forging tweak e∗ that must be
constrained.

2. It is easy to see that the result of Theorem 2 applies equally well to strong unforgeability
up to sign (see Section 4.1.1). Indeed, the only place in the proof where we explicitly
used the assumption that (m∗, e∗) was not submitted as a signing request was in
the analysis of a Type Ia forgery, where R∗ = ±R for some R produced by the
signing oracle on input (m, e), where e∗ = e. Just as we noted in the discussion
after Theorem 1, either m∗ = m and (s∗, t∗) is not a forgery in the sense of strong
unforgeability up to sign, or m∗ 6= m and we can break the collision resistance of
Hash.

6.1 Alternative analysis

Suppose that a tweak e ∈ Zq is derived from an identifier via the hash function Hash ′ as

e← Hash ′(id),

and there is otherwise no restriction on the set of valid tweaks. Here, Hash ′ could be the
same as Hash, or it could be a different hash function (for example, BIP32 uses a specific
hashing mechanism that is also parameterized by the verification key D). In this setting,
the definition of security would need to be adjusted so that the rules for valid forgeries are
defined in terms of identities rather than tweaks.

In this setting, the term
CRadv[BIa,Hash]

appearing in Theorem 2 would have to be replaced by

CRadv[BIa,Hash] + CRadv[B′Ia,Hash ′].

Also in this setting, the term

|E| · RPRadv[BIb,Hash]

appearing in Theorem 2 can be replaced by

2sumadv[BIb,Hash,Hash ′],

where 2sumadv is defined as follows:

Definition 6 (2sum intractability). Let Hash,Hash1 be a hash function whose output
space is Zq. Let A be an adversary. We define 2sumadv[A,Hash,Hash′] to be the advantage
of A in breaking the 2sum property of Hash and Hash′. This is defined as the probability
that A wins the following game.

20

• Adversary chooses h, e ∈ Zq and sends gives these to the challenger.

• The challenger chooses t ∈ Zq uniformly at random and gives t to A.

• A outputs m∗, id∗.

• We say A wins the game if

h+ te = h∗ + te∗,

where e 6= e∗, h∗ := Hash(m∗), and e∗ := Hash′(id∗).

Also in this setting, the term

|E| · RPRadv[BII,Hash]

appearing in Theorem 2 can be replaced by

2sumadv[BII,Hash,Hash ′].

The value e in Definition 6 would be set to the value a/b in the proof of Theorem 2, the
value h in the definition would be set to 0, and the value t in the definition would correspond
to the value t∗ in the proof.

Note that we could weaken the definition of 2sum intractability by having the adversary
supply preimages of h and e. Under this weaker definition, we could no longer prove security
with respect to raw signing queries under this assumption, however.

We leave it as an easy exercise for the reader to show that if Hash and Hash ′ are modeled
as random oracles, then

2sumroadv[A,Hash,Hash ′] ≤ QQ′

q
,

where 2sumroadv[A,Hash,Hash ′] is the corresponding advantage in the random oracle
model, Q is a bound on the number of queries to Hash made by A, and Q′ is a bound
on the number of queries to Hash ′ made by A.

7 ECDSA with presignatures

In some settings, it is convenient to precompute various pairs

(r,R)

where r
$← Z∗q and R ← rG. When processing a request to sign a message, we can allocate

one such precomputed pair and use it to finish the computation of the signature. So long
as neither R is not revealed to the adversary before he makes a signing query, our proof
of security goes through unchanged. However, there are optimizations in some settings
(especially in threshold signing protocols) that can be exploited if we do in fact reveal R to
the adversary before he chooses which message to sign using the value of R.

In the forgery game, we allow the adversary to make presig queries, which generate a
pair (r,R) as above. In a signing request, the adversary also specifies an index k to specify
that the kth presignature should be used to sign the given message. The adversary is not
allowed to specify the same presignature index for two distinct signing requests.

21

1. Initialization:

(a) π ← {(0,O)}.
(b) d

$← Z∗q
(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;

while P ∈ Range(π) do: P $← E∗

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

while i ∈ Domain(π) do: i
$← Z∗q

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1)+π−1(P2)) and re-
turn the result

4. To process a presignature request:

(a) k ← k + 1

(b) rk
$← Z∗q

(c) invoke (map, rk) to get Rk

(d) tk ← C̄(Rk) ∈ Zq

(e) if tk = 0 then return fail

(f) K ← K ∪ {k}; return Rk

5. To process a request to sign mk using presig-
nature number k ∈ K:

(a) K ← K \ {k}
(b) hk ← Hash(mk) ∈ Zq

(c) if hk + tkd = 0 then return fail

(d) sk ← r−1
k (hk + tkd)

(e) return (sk, tk)

Figure 4: Lazy-Sim (with presignatures)

7.1 A lazy simulation of the signature attack game

We start with the analog of Lazy-Sim in Section 5.1, but now with presignatures. Figure 4
gives the details of Lazy-Sim.

7.2 A symbolic simulation of the signature attack game

We now define a symbolic simulation of the attack game, which is the analog of Symbolic-
Sim in Section 5.2. In this setting, however, Domain(π) will now consist of polynomials of
the form

a+ bD + c1R1 + c2R2 + · · · ,

where a, b, c1, c2, . . . ∈ Zq, and D, R1, R2, . . . are indeterminants. Here, D symbolically rep-
resents the value of d, and Rk symbolically represents the value of rk. Figure 5 gives the
details of Symbolic-Sim.

Lemma 2. The difference between the adversary’s forging advantage in the Lazy-Sim and
Symbolic-Sim games (as described in Sections 7.1 and 7.2) is O(N2/q).

Proof. See Appendix B.

Since our symbolic simulation is used in our reductions to various hardness assumptions
about Hash, we have to take into account the extra cost associated with computing with
polynomials in the variables D, R1, R2, Let U denote the maximum number of unused
presignatures at any point in time, i.e., the maximum size of the set K attained throughout
the game. Assuming we use hash tables as appropriate, the symbolic simulation can be

22

1. Initialization:

(a) π ← {(0,O)}.
(b) invoke (map, 1) to obtain G
(c) invoke (map, D) to obtain D
(d) k ← 0; K ← ∅
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;
if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1)+π−1(P2)) and re-
turn the result

4. To process a presignature request:

(a) k ← k + 1

(b) invoke (map, Rk) to get Rk

(c) tk ← C̄(Rk) ∈ Zq

(d) if tk = 0 then abort

(e) K ← K ∪ {k}; return Rk

5. To process a request to sign mk using presig-
nature number k ∈ K:

(a) K ← K \ {k}
(b) hk ← Hash(mk) ∈ Zq

(c) sk
$← Z∗q

(d) substitute s−1
k (hk+tkD) for Rk through-

out Domain(π), and abort if any two
polynomials collapse

(e) return (sk, tk)

Figure 5: Symbolic-Sim (with presignatures)

implemented so as to have an expected running time that is O(UN) (with good tail bounds
on the running time as well). This degradation in the running time by a factor of U for
the extra bookkeeping seems unavoidable. If one views Hash as a random oracle, then this
degradation plays no role, as then we have a perfectly information-theoretic result.

7.3 Security of ECDSA with presignatures

The results proved in Section 5.3 on basic ECDSA (without key derivation) do not carry
through without modification. To analyze security in the setting, we need a new assumption
on Hash:

Definition 7 (Ratio resistance). Let Hash be a hash function whose output space is Zq.
Let A be an adversary. We define RRadv[A,Hash] to be the advantage of A in breaking
the ratio resistance of Hash. This is defined as the probability that A wins the following
game.

• The challenger chooses ρ ∈ Z∗q uniformly at random and gives ρ to A.

• A outputs messages m and m∗.

• We say A wins the game if Hash(m∗) 6= 0 and Hash(m)/Hash(m∗) = ρ.

If we view Hash as a random oracle, then the best type of ratio resistance attack is a
birthday attack.

We define CMAggm
ps adv[A,S] to be adversary A’s advantage in winning the CMA game

with presignatures in the EC-GGM.
Theorem 1 then becomes:

23

Theorem 3. Let A be an adversary attacking Secdsa as in Definition 2 with presignatures
that makes at most N presignature, signing, or group queries. Let U denote the maximum
number of unused presignatures at any point in time. Then there exist adversaries BI, BIIa,
BIIb, BIIc, and BIII, whose running times are essentially the same as A plus O(UN), such
that

CMAggm
ps adv[A,Secdsa] ≤ CRadv[BI,Hash] +

(4 + o(1))N · RPRadv[BIIa,Hash] +

(4 + o(1))N · RRadv[BIIb,Hash] +

UN · RPRadv[BIIc,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. Everything goes through as in the proof of Theorem 1, except for the analysis of
Type II forgeries.

Consider the point in time when the adversary queries the group oracle to obtain R∗
for the first time. Let us call this a Type IIa forgery if at this time, π−1(R∗) is of the form
a+ bD. Type IIa forgeries can be dealt with in exactly the same way as Type II forgeries in
the proof of Theorem 1.

Now, consider a Type II forgery that is not a Type IIa forgery. For such a forgery, the
initial preimage of R∗ is a polynomial that involves the indeterminants R1, R2, However,
before the attack ends, all of these variables must be substituted via signing queries —
indeed, if the attack ends with a forgery, we must have π−1(R∗) = (s∗)−1(h∗ + t∗D).

Renaming variables as necessary, suppose that at the time R∗ is initially generated, we
have

π−1(R∗) = a+ bD + c1R1 + · · ·+ c`R`,

where the ci’s are nonzero, and that during the attack, we substitute

Ri 7→ s−1i (hi + tiD) for i = 1, . . . , `

in that order. Let us define a Type IIb forgery to be one with

h1
t1

= · · · = h`
t`

=
h∗

t∗
, (3)

and we define a Type IIc forgery to be a Type II forgery that is neither Type IIa or IIb.
We can use a Type IIb forger to break the ratio resistance of Hash. Note that the initial

preimage of R∗ cannot be of the form ±Rk, as otherwise this would be a Type I forgery;
in particular, the group element R∗ must be generated at random via a group oracle query
made directly by the adversary. Therefore, given the ratio-resistance challenge ρ, we guess
the group oracle query that produces R∗, pick one of the variables Ri arbitrarily from
among the variables R1, R2, . . . , R` appearing in π−1(R∗) at that time R∗ is generated, and
run the sampler on input t∗ = ti/ρ to generate R∗. This is the adversary BIIb in Theorem 3.
Note that adversary BIIb will succeed if its guess at R∗ was correct, regardless of which of
the variables Ri it chooses.

24

We can use a Type IIc forger to break the random-preimage resistance of Hash. This
is the adversary BIIc in Theorem 3. To understand the design of adversary BIIc, consider a
Type IIc forgery. For i = 0, . . . , `, define

Ai := a+
∑
j≤i

cjhj/sj and Bi := b+
∑
j≤i

cjtj/sj .

At the end of the attack, we must have

π−1(R∗) = A` +B`D,

and so the forgery must satisfy:

A` = (s∗)−1h∗ and B` = (s∗)−1t∗. (4)

These two equations imply
A` = B` · h∗/t∗. (5)

Using the fact that A` = A`−1 + c`h`/s` and B` = B`−1 + c`t`/s`, we can rewrite (5) as

(A`−1 −B`−1h`/t`) = (B`−1 + s−1` c`t`)︸ ︷︷ ︸
=B`

(h∗/t∗ − h`/t`). (6)

From (6), it is clear that either

(a) A`−1 6= B`−1 · h`/t`,

(b) A`−1 = B`−1 · h∗/t∗ and h`/t` = h∗/t∗, or

(c) B` = 0.

By repeating the above argument, and because we are assuming that (3) does not hold, we
see that either

(i) Ai−1 6= Bi−1 · hi/ti and Ai = Bi · h∗/t∗ for some i = 1, . . . , `, or

(ii) Bi = 0 for some i = 1, . . . , `.

If we wish, we can categorize these as Type IIc(i) and IIc(ii) forgeries. Note that for a
Type IIc(i) forgery, we may also assume that hj/tj = h∗/t∗ for j = i + 1, . . . , `, but we do
not use this fact here.

The probability if a Type IIc(i) forgery can be bounded by UN ·RPRadv[BIIc,Hash] +
O(UN/q). The random-preimage adversary BIIc works by guessing R∗ and then guess-
ing the index i at which condition (i) above occurs. Analogous to (6), we have

(Ai−1 −Bi−1hi/ti) = (Bi−1 + s−1i citi)(h
∗/t∗ − hi/ti). (7)

At the time the substitution Ri 7→ s−1i (hi + tiD) is made, all of the terms appearing in
(7), besides si and h∗, are already fixed. Moreover, we are assuming the left hand side of
(7) is nonzero. This implies there is a one-to-one correspondence: for every h∗ such that
h∗/t∗ − hi/ti 6= 0 there exists a unique s−1i such that Bi−1 + s−1i citi 6= 0 and vice versa.
Adversary BIIc uses its challenge as the value of h∗ and solves (7) for s−1i . Note that there
are (at most) two values of h∗ for which this will fail, one that satisfies h∗/t∗ − hi/ti = 0
and the other that makes s−1i = 0.

The probability of a Type IIc(ii) forgery is easily seen to be at most (UN)/(q − 1).

25

NOTES:

1. This scheme cannot be secure if we allow raw signing queries. Here is one simple
attack. Suppose we get a presignature R with t := C̄(R) and we compute R∗ = 2R.
Let h∗ = Hash(m∗) be the hash of a messagem∗ for which we want to forge a signature.
We solve h/t = h∗/t∗ for h and ask for a raw signature on h using presignature R,
obtaining the signature (s, t). We then compute s∗ satisfying (s∗)−1t∗ = cts−1, so
(s∗, t∗) is a forgery on m∗.

2. More generally, we really do need to assume that given t and t∗, it is hard to find
preimages of h and h∗ such that h/t = h∗/t∗ holds, as otherwise, essentially the same
attack can be applied. Thus, ratio resistance is essential.

3. An attacker could try the above attack with R∗ = 2R, 3R, . . . , obtaining many can-
didates for t∗ to combine with many candidates for h and h∗. This would give us a
multiplicative version of the 3-sum problem, for which there is no known attack that
is significantly better than birthday (see [NS15]).

4. It is easy to see that the result of Theorem 3 applies equally well to strong unforgeability
up to sign (see Section 4.1.1). The reasoning is the same is in the discussion following
Theorem 1.

7.4 ECDSA with presignatures and additive key derivation

Now suppose we combine presignatures with additive key derivation. Here, we assume that
presig queries take no input as before, but the signing queries take as input an index k
that specifies the presignature to use, along with a message mk and the tweak ek.

We define CMAggm
akd,psadv[A,S,E] to be adversary A’s advantage in winning this modified

CMA game in the EC-GGM. We can still prove security of ECDSA in this setting using
stronger intractability assumptions for Hash.

Let us first consider the symbolic simulation of the signing oracle. Using the notation
established above, hk := Hash(mk) and tk := C̄(Rk). We want to choose sk ∈ Z∗q at random

and then substitute s−1k (hk + tkek + tkD), rather than s−1k (hk + tkD) for Rk in all polynomials
in Domain(π) that involve Rk. The proof of Lemma 2 goes through unchanged.

Definition 8 (4sum1 intractability). Let Hash be a hash function whose output space
is Zq. Let E ⊆ Zq. Let A be an adversary. We define 4sum1adv[A,Hash,E] to be the
advantage of A in breaking the 4sum1 property of Hash with respect to the set E. This is
defined as the probability that A wins the following game.

• The challenger chooses t ∈ Zq uniformly at random and gives t to A.

• A outputs m, e,m∗, e∗, where e, e∗ ∈ E.

• We say A wins the game if

h+ te = h∗ + te∗,

where e 6= e∗ and h := Hash(m) and h∗ := Hash(m∗).

26

Definition 9 (4sum2 intractability). Let Hash be a hash function whose output space
is Zq. Let E ⊆ Zq. Let A be an adversary. We define 4sum2adv[A,Hash,E] to be the
advantage of A in breaking the 4sum2 property of Hash with respect to the set E. This is
defined as the probability that A wins the following game.

• The adversary asks the challenger for many random samples in Z∗q, and the adversary
chooses one such sample t ∈ Z∗q.

• The challenger chooses t∗ ∈ Z∗q at random and gives t∗ to A.

• A outputs m, e,m∗, e∗, where e, e∗ ∈ E.

• We say A wins the game if

h/t+ e = h∗/t∗ + e∗,

where h := Hash(m) and h∗ := Hash(m∗) 6= 0.

Theorem 4. Let A be an adversary attacking Secdsa as in Definition 2 with additive key
derivation and presignatures that makes at most N presignature, signing, or group
queries, of which Npsig are presignature requests. Let U denote the maximum number of
unused presignatures at any point in time. Then there exist adversaries BIa, BIb, BIIa, BIIb,
and BIIc, and BIII, whose running times are essentially the same as A plus O(UN), such
that

CMAggm
akd,psadv[A,Secdsa,E] ≤ CRadv[BIa,Hash] +

(4 + o(1))Npsig · 4sum1adv[BIb,Hash,E] +

(4 + o(1))N |E| · RPRadv[BIIa,Hash] +

(4 + o(1))N · 4sum2adv[BIIb,Hash,E] +

UN |E| · RPRadv[BIIc,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Also, adversary BIIb obtains O(Npsig) random samples from its challenger.

Proof. We categorize forgeries as Types Ia, Ib, IIa, IIb, IIc, and III: Types Ia and Ib are as
in Theorem 2, Types IIa–IIc are as in Theorem 3, and Type III is as in Theorem 1.

The analysis we did for Type Ia and III forgeries in Section 6 goes through here without
any change. Also, the analysis we did for Type II forgeries in Section 6 carries over here for
Type IIa forgeries.

Type Ib forgeries. We get a Type Ib forgery if and only if the equation (1) holds with
e 6= e∗. Without presignatures, the adversary had to commit to h and e before learning
t, but with presignatures, the adversary is free to choose h and e, along with h∗ and e∗,
after learning t. Indeed, we see that creating a Type Ib forgery is essentially equivalent
to breaking the 4sum1 property in Definition 8. We can easily use such a forger to break
the 4sum1 property as follows: given the challenge t in the 4sum1 game, we guess the
relevant presignature, set tk := t and run the sampler on t to get Rk. This gives us BIb
in Theorem 4.

27

Type IIb and IIc forgeries. Everything goes through exactly as in Theorem 3, but
with hi replaced by ∆i := hi + tiei and h∗ replaced by ∆∗ := h∗ + t∗e∗. In particular, we
categorize Type IIb forgeries as those where

∆1

t1
= · · · = ∆k

tk
=

∆∗

t∗
.

We can easily use a Type IIb forger to break the 4sum2 property as follows. In the first
stage of the attack game in Definition 9, we use the random samples given by the 4sum2-
challenger to generate all the presignatures we need using the sampling algorithm. With
overwhelming probability, O(Npsig) random samples will suffice. We then guess the group
operation that produces R∗. At the time this group group operation is performed, we
choose one of the variables Ri appearing in π−1(R∗) arbitrarily and select t in the attack
game in Definition 9 to the corresponding sample ti. We then obtain t∗ from our 4sum2-
challenger and run the sampling algorithm on t∗ to get R∗. A Type IIb forgery will give us
the values m, e,m∗, e∗ we need to win the attack game in Definition 9. This is adversary
BIIb in Theorem 4.

The adversary BIIc in Theorem 4 is exactly the same as BIIc in Theorem 3, but with hk
replaced by ∆k and h∗ replaced by ∆∗, and where we also have to guess the tweak e∗.

NOTES:

1. Just as in the case of presignatures without additive key derivation, this scheme cannot
be secure if we allow raw signing queries.

2. It is easy to see that the result of Theorem 4 applies equally well to strong unforgeability
up to sign (see Section 4.1.1). The reasoning is the same is in the discussion following
Theorem 2.

7.4.1 How strong are the 4sum1 and 4sum2 properties?

Consider first the 4sum1 property. If we just choose e and e∗ arbitrarily, then viewing Hash
as a random oracle, then analogous to the birthday attack, we can find m and m∗ satisfying
the required relation in time O(

√
q). However, by exploiting the fact that we also have

control over e and e∗, we can beat the birthday attack.
Indeed, suppose we view Hash as a random oracle, and the elements of E are randomly

chosen. Then this problem is no harder than the 4-sum problem studied in Wagner [Wag02]
and elsewhere [BLN+09, NS15]. Wagner gave an algorithm to solve this problem that beats
the birthday attack. In Appendix C, we sketch Wagner’s algorithm, adapted to our setting.
One consequence of this is that if |E| = Θ(q1/3), then we can solve this 4-sum problem and
forge a signature in time O(q1/3). The attack works as follows.

• Make one presignature query to get the group element R and let t := C̄(R).

• Use Wagner’s algorithm to find m, e,m∗, e∗ such that h+ te = h∗ + te∗, where e 6= e∗

and h := Hash(m) and h∗ := Hash(m∗).

• Now ask for a signature using this presignature on message m with tweak e.

28

• This signature is also a signature on m∗ with tweak e∗.

The O(q1/3) work is time spent computing hashes of messages and tweaks (which them-
selves may well just be hashes), and performing hash table lookups. Mitigating against this
attack is

• the fact that the O(q1/3) time must be done between the time that the presignature is
generated and the time that the adversary asks for a signature using that presignature,
and

• the fact that the attack takes space O(q1/3) — but see [BLN+09, NS15] for time-space
trade-offs.

We stress that this O(q1/3) attack requires just one presignature and one corresponding
signature.

It is also easily seen that the 4sum2 property is also no harder than a 4-sum problem.

7.4.2 Alternative analysis

Just as we did in Section 6.1, we can consider the setting where tweaks are derived from
identifiers via a hash function Hash ′, without any further restrictions.

In this setting, the term
CRadv[BIa,Hash]

appearing in Theorem 4 would have to be replaced by

CRadv[BIa,Hash] + CRadv[B′Ia,Hash ′].

Also in this setting, the term

|E| · RPRadv[BIIa,Hash]

appearing in Theorem 4 can be replaced by

2sumadv[BIIa,Hash,Hash ′].

As for the term
|E| · RPRadv[BIIc,Hash]

appearing in Theorem 4, with a bit more work, one can show that this can in fact be
replaced by

(4 + o(1)) · 2sumadv[BIIc,Hash,Hash ′].

Here, the value e in the definition will be set to a random value, which represents the value

(Ai−1 −Bi−1∆i/ti)/(Bi−1 + s−1i citi) + ∆i/ti

in the proof; h in the definition is set to 0; t in the definition would correspond to t∗ in the
proof.

Also, for the terms in Theorem 4 involving 4sum1 and 4sum2 intractability, one have
to replace the corresponding security definitions so that instead of giving e, e∗ ∈ E, the
adversary would have to give preimages of e and e∗.

29

8 ECDSA with re-randomized presignatures

We saw the ECDSA with presignatures leads to potential vulnerabilities, especially when
combined with additive key derivation. At the very least, we require additional intractabil-
ity assumptions. In this section, we explore a variant in which the presignatures are
re-randomized when used for signing. For threshold ECDSA implementations, this re-
randomization maintains most of the benefits of presignatures; however, it also maintains
most of the security properties that we had without presignatures, both in the settings with
and without additive key derivation.

So now a presignature is of the form

(r′,R′),

where r′
$← Zq and R′ ← r′G. As before, when processing a request to sign a message, we

can allocate one such precomputed pair and use it to finish the computation of the signature.

However, instead of using the presignature directly, we re-randomize it, computing δ
$← Zq,

and using
(r,R) := (r′ + δ,R′ + δG)

as the presignature. Crucially, the value of δ is given to the adversary as an output of the
signing request.

NOTES:

1. The reason why we insist on giving δ to the adversary is that a protocol implementing
a distributed signing service may ultimately reveal δ. This allows us to reduce the
security of such a distributed protocol to this primitive. Depending on how the dis-
tributed signing service is implemented, generating δ may or may not introduce extra
latency.

2. Instead of generating δ at random, it could also be obtained by deriving it as a hash
of R′ and the signing request. The results we present here could be adapted to this
setting, especially if we model the hash as a random oracle. While the security results
would be somewhat weaker than if δ is generated at random, they would still be
significantly stronger than not using any re-randomization at all.

8.1 A lazy simulation of the signature attack game

We start with the analog of Lazy-Sim in Section 7.1, but now with re-randomized presig-
natures. Figure 6 gives the details of Lazy-Sim.

8.2 A symbolic simulation of the signature attack game

We define a symbolic simulation of the attack game, which is the analog of Symbolic-Sim
in Section 7.2. As in Section 7.2, Domain(π) will now consist of polynomials of the form

a+ bD + c1R1 + c2R2 + · · · ,

30

1. Initialization:

(a) π ← {(0,O)}.
(b) d

$← Z∗q
(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;

while P ∈ Range(π) do: P $← E∗

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

while i ∈ Domain(π) do: i
$← Z∗q

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1)+π−1(P2)) and re-
turn the result

4. To process a presignature request:

(a) k ← k + 1

(b) r′k
$← Zq

(c) invoke (map, r′k) to get R′k
(d) K ← K ∪ {k}; return R′k

5. To process a request to sign mk using presig-
nature number k ∈ K:

(a) K ← K \ {k}
(b) δk

$← Zq

(c) rk ← r′k + δk
(d) if rk = 0 then return fail

(e) invoke (map, rk) to get Rk

(f) tk ← C̄(Rk) ∈ Zq

(g) hk ← Hash(mk) ∈ Zq

(h) if tk = 0 or hk + tkd = 0 then return
fail

(i) sk ← r−1
k (hk + tkd)

(j) return (sk, tk,Rk, δk)

Figure 6: Lazy-Sim (with re-randomized presignatures)

where a, b, c1, c2, . . . ∈ Zq, and D, R1, R2, . . . are indeterminants. Here, D symbolically repre-
sents the value of d, and Rk symbolically represents the value of r′k (and not rk). Figure 7
gives the details of Symbolic-Sym.

Lemma 3. The difference between the adversary’s forging advantage in the Lazy-Sim and
Symbolic-Sim games (as described in Sections 8.1 and 8.2) is O(N2/q).

The proof of Lemma 3 follows the same lines as that of Lemma 2, and we leave the
details to the reader.

8.3 Security of ECDSA with re-randomized presignatures

We define CMAggm
rrpsadv[A,S,E] to be adversary A’s advantage in winning this modified

CMA game in the EC-GGM.

Theorem 5. Let A be an adversary attacking Secdsa as in Definition 2 with re-randomized
presignatures that makes at most N presignature, signing, or group queries. Let U denote
the maximum number of unused presignatures at any point in time. Then there exist ad-
versaries BI, BIIa, BIIbc, and BIII, whose running times are essentially the same as A plus

31

1. Initialization:

(a) π ← {(0,O)}.
(b) invoke (map, 1) to obtain G
(c) invoke (map, D) to obtain D
(d) k ← 0; K ← ∅
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;
if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1)+π−1(P2)) and re-
turn the result

4. To process a presignature request:

(a) k ← k + 1

(b) invoke (map, Rk) to get R′k
(c) K ← K ∪ {k}; return R′k

5. To process a request to sign mk using presig-
nature number k ∈ K:

(a) K ← K \ {k}
(b) δk

$← Zq

(c) if Rk + δk ∈ Domain(π) then abort

(d) invoke (map, Rk + δk) to obtain Rk

(e) tk ← C̄(Rk)

(f) if tk = 0 then abort

(g) hk ← Hash(mk) ∈ Zq

(h) sk
$← Z∗q

(i) substitute s−1
k (hk + tkD) − δk for Rk

throughout Domain(π), and abort if
any two polynomials collapse

(j) return (sk, tk,Rk, δk)

Figure 7: Symbolic-Sim (with re-randomized presignatures)

O(UN), such that

CMAggm
rrpsadv[A,Secdsa] ≤ CRadv[BI,Hash] +

(4 + o(1))N · RPRadv[BIIa,Hash] +

N · RPRadv[BIIbc,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. We categorize forgeries just as in Theorem 3, but we lump Types IIb and IIc into a
single Type IIbc. Forgeries of types I, IIa, and III are handled just as in Theorem 3.

For forgeries of type IIbc, just as in Theorem 3, we suppose that at the time R∗ is
initially generated, we have

π−1(R∗) = a+ bD + c1R1 + · · ·+ c`R`,

where the ci’s are nonzero; however, during the attack, we substitute

Ri 7→ s−1i (hi + tiD)− δi for i = 1, . . . , `,

again, in that order. For i = 0, . . . , `, define

Ai := a+
∑
j≤i

cj(hj/sj − δj) and Bi := b+
∑
j≤i

cjtj/sj .

Equation (6) then becomes

(A`−1 −B`−1h`/t` − c`δ`) = (B`−1 + s−1` c`t`)(h
∗/t∗ − h`/t`). (8)

32

At the time the substitution R` 7→ s−1` (h` + t`D) − δ` is made, all of the terms appearing
in (8), besides δ`, s`, and h∗, are already fixed. Therefore, the left-hand side of (8) will
vanish with probability 1/q, and as long as this does not happen, we can use this Type IIbc
forger to break random-preimage resistance. Indeed, just as we argued in the proof of
Theorem 3, there is a one-to-one correspondence: for every h∗ such that h∗/t∗ − h`/t` 6= 0
there exists a unique s−1` such that B`−1 +s−1` c`t` 6= 0 and vice versa. We use this the given
random-preimage challenge as the value of h∗ and solve (8) for s−1` .

NOTES:

1. With re-randomized presignatures, we again obtain security with respect to raw sign-
ing queries (allowing arbitrary, unconstrained hk ∈ Zq).

2. One sees from the proof of Theorem 5 that we only need that the randomizer δk is
sufficiently unpredictable — it need not be uniformly distributed over Zq.

3. It is easy to see that the result of Theorem 5 applies equally well to strong unforgeability
up to sign (see Section 4.1.1).

8.4 ECDSA with re-randomized presignatures and additive key deriva-
tion

Now suppose we combine re-randomized presignatures with additive key derivation. We
define CMAggm

akd,rrpsadv[A,S,E] to be adversary A’s advantage in winning this modified CMA
game in the EC-GGM.

Theorem 6. Let A be an adversary attacking Secdsa as in Definition 2 with additive key
derivation and re-randomized presignatures that makes at most N presignature, sign-
ing, or group queries, of which Npsig are presignature queries. Let U denote the maximum
number of unused presignatures at any point in time. Then there exist adversaries BIa, BIb,
BIIa, BIIc, and BIII, whose running times are essentially the same as A plus O(UN), such
that

CMAggm
akd,rrpsadv[A,Secdsa,E] ≤ CRadv[BIa,Hash] +

(4 + o(1))Nsig|E| · RPRadv[BIb,Hash] +

(4 + o(1))N |E| · RPRadv[BIIa,Hash] +

N |E| · RPRadv[BIIbc,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. Forgeries are categorized just as in Theorem 4, but we lump Types IIb and IIc into
a single Type IIbc. Type Ia and Ib forgeries are handled just as in Theorem 2. Type IIa
forgeries are handled just like Type II forgeries in Theorem 2. Type III forgeries are handled
just as in Theorem 1.

For Type IIbc forgeries, everything goes through exactly as in Theorem 5, but with hi
replaced by ∆i := hi + tiei and h∗ replaced by ∆∗ := h∗+ t∗e∗, and the adversary BIIbc has
to guess e∗.

33

NOTES:

1. With re-randomized presignatures, we again obtain security with respect to raw sign-
ing queries (allowing arbitrary, unconstrained hk, ek ∈ Zq).

2. Just in in Theorem 5, it is not essential that δk is uniformly distributed over Zq — it
only needs to be sufficiently unpredictable.

3. It is easy to see that the result of Theorem 6 applies equally well to strong unforgeability
up to sign (see Section 4.1.1).

8.4.1 Alternative analysis

Just as we did in Sections 6.1 and 7.4.2, we can consider the setting where tweaks are
derived from identifiers via a hash function Hash ′, without any further restrictions.

The terms in Theorem 6 involving BIa and BIb are replaced as in Section 6.1. The term
involving BIIa is replaced as in Section 7.4.2. The term involving BIIbc is replaced in the
same way the term involving BIIc is replaced in Section 7.4.2.

9 Homogeneous key derivation

We propose a new key derivation technique (a similar construction was given in [GS14] for
completely different purposes). This derivation technique is still essentially linear, and so
enjoys many of the same advantages of additive key derivation, including

• the ability to derive public keys from a master public key, and

• the ability to efficiently implement the scheme as a threshold signature scheme.

The basic idea is this. The master secret key is now a random pair (d, d′) ∈ Zq × Zq,
and the corresponding master public key is the pair

(D,D′) := (dG, d′G) ∈ E × E.

For a given “tweak” e ∈ Zq, the corresponding derived secret key is d + ed′ ∈ Zq and the
corresponding derived public key is D + eD′.

We consider homogeneous key derivation without presignatures, with presignatures, and
with re-randomized presignatures.

As we will see, we can prove stronger results with homogeneous key derivation than
we could with additive key derivation. In particular, we will not need to assume that the
tweaks come from some predetermined set E ⊆ Zq. As such, we will assume that a tweak
e ∈ Zq is derived from the hash function Hash as

e← Hash(id),

where id is an arbitrary identifier. Here, Hash is the same hash function used by ECDSA;
however, it could also be a different hash function (the only requirement is that this hash
function maps into Zq and is collision resistant). The signing algorithm will take as input
both a message m and an identifier id . In the forgery attack game, a forgery consists of a
valid signature (s∗, t∗) on a message m∗ and an identifier id∗, subject to the constraint that
the signing oracle was not invoked with the same message/identifier pair (m∗, id∗).

34

9.1 Homogeneous key derivation without presignatures

The lazy simulation in Section 5.1 is modified as follows:

• In the initialization step, the challenger chooses (d, d′) ∈ Zq × Zq at random, invokes
(map, d) and (map, d′) to obtain D and D′. The challenger gives (G,D,D′) to the
adversary.

• In a signing request, the adversary supplies an identifier id in addition to a message
m, and the tweak e ∈ Zq is computed as e ← Hash(id). To process such a signing
request, the challenger carries out the same logic, but with d + ed′ replacing d in
steps 4(f) and 4(g).

To verify a signature with respect to a tweak e∗, where e∗ := Hash(id∗), the signature is
verified with respect to the public key D + e∗D′.

The symbolic simulation in Section 5.2 is modified as follows:

• In the initialization step, the challenger invokes (map, D) and (map, D′) to obtain D
and D′. The challenger gives (G,D,D′) to the adversary. Here, D and D′ are distinct
indeterminants.

• In a signing request, the adversary supplies an identifier id in addition to a message
m, and the tweak e ∈ Zq is computed as e ← Hash(id). To process such a signing
request, the challenger carries out the same logic, but with D + eD′ replacing D in
step 4(g).

We define CMAggm
hkd adv[A,S] to be adversary A’s advantage in winning this modified

CMA game in the EC-GGM.
It is easy to prove that Lemma 1 carries over to this setting without change. We leave

this to the reader.
We can prove the following analog of Theorem 2. As the reader will notice, the statement

of this theorem is almost the same as Theorem 1.

Theorem 7. Let A be an adversary attacking Secdsa as in Definition 2 with homoge-
neous key derivation that makes at most N signing or group queries. Then there exist
adversaries BI, BII, and BIII, whose running times are essentially the same as A, such that

CMAggm
hkd adv[A,Secdsa] ≤ CRadv[BI,Hash] +

(4 + o(1))N · RPRadv[BII,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. We categorize forgeries as Type I, II, or III just as in Theorem 1.
For a Type I forgery, for η ∈ {±1}, we have

(s∗)−1(h∗ + tD + te∗D′) = ηs−1(h+ tD + teD′).

This gives us three equations:

(s∗)−1h∗ = ηs−1h, (s∗)−1t = ηs−1t, and (s∗)−1te∗ = ηs−1te.

35

These three equations imply
h∗ = h and e∗ = e.

This immediately gives us the adversary BI in Theorem 7 that breaks the collision resistance
of Hash, either of the form Hash(m∗) = Hash(m) or Hash(id∗) = Hash(id).

For a Type II forgery, if π−1(R∗) = a+ bD + b′D′, we have

a+ bD + b′D′ = (s∗)−1(h∗ + t∗D + t∗e∗D′).

This gives us three equations:

a = (s∗)−1h∗, b = (s∗)−1t∗, and b′ = (s∗)−1t∗e∗.

Just as in Theorem 1, we obtain b 6= 0, a 6= 0, and

t∗ = h∗a−1b.

In addition, we have b′ = be∗. So just as in Theorem 1, we obtain an adversary BII that
breaks the random-preimage resistance of Hash.

For a Type III forgery, just as in Theorem 1, we obtain an adversary BIII that breaks
the zero-preimage resistance of Hash.

NOTES:

1. The above analysis shows that the scheme is secure even with a “raw” signing oracle.

2. It is easy to see that the result of Theorem 7 applies equally well to strong unforgeability
up to sign (see Section 4.1.1).

9.2 Homogeneous key derivation with presignatures

The lazy simulation in Section 7.1 is modified as follows:

• In the initialization step, the challenger chooses (d, d′) ∈ Zq × Zq at random, invokes
(map, d) and (map, d′) to obtain D and D′. The challenger gives (G,D,D′) to the
adversary.

• In a signing request, the adversary supplies an identifier idk in addition to a message
mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk). To process such a signing
request, the challenger carries out the same logic, but with d + ekd

′ replacing d in
steps 5(c) and 5(d).

To verify a signature with respect to a tweak e∗, where e∗ := Hash(id∗), the signature is
verified with respect to the public key D + e∗D′.

The symbolic simulation in Section 7.2 is modified as follows:

• In the initialization step, the challenger invokes (map, D) and (map, D′) to obtain D
and D′. The challenger gives (G,D,D′) to the adversary. Here, D and D′ are distinct
indeterminants.

36

• In a signing request, the adversary supplies an identifier idk in addition to a message
mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk). To process such a signing
request, the challenger carries out the same logic, but with D + ekD

′ replacing D in
step 5(d).

We define CMAggm
hkd,psadv[A,S] to be adversary A’s advantage in winning this modified

CMA game in the EC-GGM.
It is easy to prove that Lemma 2 carries over to this setting without change. We leave

this to the reader.
We can prove the following analog of Theorem 4. As the reader will notice, the statement

of this theorem is almost the same as Theorem 3.

Theorem 8. Let A be an adversary attacking Secdsa as in Definition 2 with homoge-
nous key derivation and presignatures that makes at most N presignature, signing, or
group queries. Let U denote the maximum number of unused presignatures at any point in
time. Then there exist adversaries BI, BIIa, BIIb, BIIc, and BIII, whose running times are
essentially the same as A plus O(UN), such that

CMAggm
hkd,psadv[A,Secdsa] ≤ CRadv[BI,Hash] +

(4 + o(1))N · RPRadv[BIIa,Hash] +

(4 + o(1))N · RRadv[BIIb,Hash] +

UN · RPRadv[BIIc,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. We categorize forgeries as Type I, IIa, IIb, IIc, or III essentially as in Theorem 3.
Everything goes through the same as in the proof of Theorem 7, except for the analysis

of Type II forgeries.
Consider the point in time when the adversary queries the group oracle to obtain R∗

for the first time. Let us call this a Type IIa forgery if at this time, π−1(R∗) is of the
form a+ bD+ b′D′. Type IIa forgeries can be dealt with in exactly the same way as Type II
forgeries in the proof of Theorem 7.

Now, consider a Type II forgery that is not a Type IIa forgery. For such a forgery, the
initial preimage of R∗ is a polynomial that involves the indeterminants R1, R2, However,
before the attack ends, all of these variables must be substituted via signing queries, so that
if the attack ends with a forgery, we must have π−1(R∗) = (s∗)−1(h∗ + t∗D + t∗e∗D′).

Just as in Theorem 3, we suppose that at the time R∗ is initially generated, we have

π−1(R∗) = a+ bD + c1R1 + · · ·+ c`R`,

where the ci’s are nonzero; however, during the attack, we substitute

Ri 7→ s−1i (hi + tiD + tieiD
′) for i = 1, . . . , `,

again, in that order. For i = 0, . . . , `, define

Ai := a+
∑
j≤i

cjhj/sj , Bi := b+
∑
j≤i

cjtj/sj , and B′i := b′ +
∑
j≤j

cjtjej/sj .

37

A forgery must satisfy:

A` = (s∗)−1h∗, B` = (s∗)−1t∗, and B′` = (s∗)−1t∗e∗. (9)

Note that the first of these two equations are identical to the two equations in (4) in the
proof of Theorem 3. Indeed, we can complete the proof just as in Theorem 3, where Type IIb
and IIc forgeries are defined in the same way.

NOTES:

1. Unlike as in Theorem 7, we see that this scheme is insecure if we allow a “raw” signing
oracle.

2. It is easy to see that the result of Theorem 8 applies equally well to strong unforgeability
up to sign (see Section 4.1.1).

9.3 Homogeneous key derivation with re-randomized presignatures

The lazy simulation in Section 8.1 is modified as follows:

• In the initialization step, the challenger chooses (d, d′) ∈ Zq × Zq at random, invokes
(map, d) and (map, d′) to obtain D and D′. The challenger gives (G,D,D′) to the
adversary.

• In a signing request, the adversary supplies an identifier idk in addition to a message
mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk). To process such a signing
request, the challenger carries out the same logic, but with d + ekd

′ replacing d in
steps 5(h) and 5(i).

To verify a signature with respect to a tweak e∗, where e∗ := Hash(id∗), the signature is
verified with respect to the public key D + e∗D′.

The symbolic simulation in Section 8.2 is modified as follows:

• In the initialization step, the challenger invokes (map, D) and (map, D′) to obtain D
and D′. The challenger gives (G,D,D′) to the adversary. Here, D and D′ are distinct
indeterminants.

• In a signing request, the adversary supplies an identifier idk in addition to a message
mk, and the tweak ek ∈ Zq is computed as ek ← Hash(idk). To process such a signing
request, the challenger carries out the same logic, but with D + ekD

′ replacing D in
step 5(i).

We define CMAggm
hkd,rrpsadv[A,S] to be adversary A’s advantage in winning this modified

CMA game in the EC-GGM.
It is easy to prove that Lemma 3 carries over to this setting without change. We leave

this to the reader.
We can prove the following analog of Theorem 6. As the reader will notice, the statement

of this theorem is almost the same as Theorem 5.

38

Theorem 9. Let A be an adversary attacking Secdsa as in Definition 2 with homogeneous
key derivation and re-randomized presignatures that makes at most N presignature,
signing, or group queries. Let U denote the maximum number of unused presignatures at
any point in time. Then there exist adversaries BI, BIIa, BIIc, and BIII, whose running times
are essentially the same as A plus O(UN), such that

CMAggm
hkd,rrpsadv[A,Secdsa] ≤ CRadv[BI,Hash] +

(4 + o(1))N · RPRadv[BIIa,Hash] +

N · RPRadv[BIIbc,Hash] +

ZPRadv[BIII,Hash] +

O(N2/q).

Proof. We categorize forgeries as Type I, IIa, IIbc, or III essentially as in Theorem 5.
The proof follows the same outline as that of Theorem 8, except for the analysis of

Type IIbc forgeries, which follows the same outline as in Theorem 5.

NOTES:

1. The above analysis shows that the scheme is secure even with a “raw” signing oracle.

2. It is easy to see that the result of Theorem 9 applies equally well to strong unforgeability
up to sign (see Section 4.1.1).

Acknowledgments

Thanks to Yevgeniy Dodis for helpful discussions on public-use guarded random oracles.
Thanks also to Nikolaos Makriyannis for bringing the paper [CMP20] to our attention, and
for discussing their analysis of ECDSA with presignatures.

A Proof of Lemma 1

In order to make certain arguments simpler, we shall replace or lazy simulator by a slightly
more lazy simulator. This simulator may abort under certain conditions, which means the
entire experiment halts and no forgery is produced.

Lazy-Sim1:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Z∗q

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) return (G,D)

39

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗; if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1) + π−1(P2)) and return the result

4. To process a request to sign m:

(a) h← Hash(m) ∈ Zq

(b) r
$← Z∗q ; if r∗ ∈ Domain(π) then abort

(c) invoke (map, r) to get R
(d) t← C̄(R) ∈ Zq

(e) if t = 0 then abort

(f) if h+ td = 0 then abort

(g) s← r−1(h+ td)

(h) return (R, s, t)

The changes are highlighted. It is trivial to verify that the adversary’s forging advantage
in this game differs from that in the original attack game by O(N2/q). Indeed, we can view
both games as operating on the same sample space, and both games proceed identically
unless a specific failure event occurs in the Lazy-Sim1-based game. One sees that this
failure event occurs with probability O(N2/q) — here we make use of the fact (among
others) that t has a guessing probability of O(1/q).

Now we modify the logic for processing signing requests, as follows:

4. To process a request to sign m:

(a) h← Hash(m) ∈ Zq

(b) R $← E∗

(c) if R ∈ Range(π) then abort

(d) t← C̄(R) ∈ Zq

(e) if t = 0 then abort

(f) s
$← Z∗q

(g) r ← s−1(h+ td)

(h) if r ∈ Domain(π) then abort

(i) add (−r,−R) and (r,R) to π

(j) return (R, s, t)

40

Let us call this Lazy-Sim2. It is easy to verify that this perfectly simulates the behavior
of Lazy-Sim1, and so the adversary’s forgery advantage does not change at all. Indeed, both
simulators choose R at random and abort if R ∈ Range(π) or t := C̄(R) satisfies t = 0 or
h+ td = 0. Moreover, if they do not abort, then both will generate r at random and abort if
r ∈ Domain(π). So, in processing a signing request, the probability that the signing request
aborts is the same in both simulations, and the distribution of (r,R) given that it does not
abort is identical.

We now define a symbolic simulation of the attack Game. The essential difference in
this game is that Domain(π) will now consist of polynomials of the form a + bD, where
a, b ∈ Zq and D is an indeterminant. Note that π will otherwise still satisfy all of the
requirements of an encoding function. The simulator is identical to Lazy-Sim2, except has
highlighted:

Symbolic-Sim:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Z∗q

(c) invoke (map, 1) to obtain G
(d) invoke (map, D) to obtain D
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗; if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1) + π−1(P2)) and return the result

4. To process a request to sign m:

(a) h← Hash(m) ∈ Zq

(b) R $← E∗

(c) if R ∈ Range(π) then abort

(d) t← C̄(R) ∈ Zq

(e) if t = 0 then abort

(f) s
$← Z∗q

(g) r ← s−1(h+ tD)

(h) if r ∈ Domain(π) then abort

41

(i) add (−r,−R) and (r,R) to π

(j) return (R, s, t)

We can model the attack game with respect to simulators Lazy-Sim2 and Symbolic-Sim
as operating in the same underlying sample space, comprising

• the random tape of the adversary,

• the random choice of d,

• the random choices if i in Step 3(b)(i).

That is, the outcomes of both games are determined by these values in the sample space,
although the computations performed in each game are different, and so the outcomes of
the games may differ.

Let us define the following Event Z, which we defined in terms of the Symbolic-Sim-
based attack game. For a polynomial P in Zq[D], we define [P] ∈ Zq to be the value of P
with D replaced by d. For a set S of such polynomials, we define [S] := {[P] : P ∈ S}.
Event Z is the event that at one of the highlighted tests of the form “P ∈ Domain(π)”, we
have P /∈ Domain(π) but [P] ∈ [Domain(π)].

We claim that these two games proceed identically unless Z occurs. This should be
clear. It follows the forging probability in these two games differs by at most Pr[Z].

It should also be clear from the Schwartz-Zippel Lemma that Pr[Z] = O(N2/q). Here,
we use the fact that in the Symbolic-Sim-based attack game, the value of d is independent
of the coefficients of the polynomials that determine Event Z.

Note that Symbolic-Sim as defined here is identical to Symbolic-Sim defined in Sec-
tion 5.2, except that in the latter, we have deleted the initialization of d in Step 1(b) of the
former, as d is not actually needed. That proves the lemma.

B Proof of Lemma 2

We start by modifying Lazy-Sim as follows.

Lazy-Sim1:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Z∗q

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗; if P ∈ Range(π) then abort

42

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1) + π−1(P2)) and return the result

4. To process a presignature request:

(a) k ← k + 1

(b) rk
$← Z∗q ; if rk ∈ Domain(π) then abort

(c) invoke (map, rk) to get R
(d) tk ← C̄(Rk) ∈ Zq

(e) if tk = 0 then abort

(f) K ← K ∪ {k}; return Rk

5. To process a request to sign mk using presignature number k ∈ K:

(a) K ← K \ {k}
(b) hk ← Hash(mk) ∈ Zq

(c) if hk + tkd = 0 then return fail

(d) sk ← r−1
k (hk + tkd)

(e) return (sk, tk)

The changes are highlighted. It is trivial to verify that the adversary’s forging advantage
in this game differs from that in the original attack game by O(N2/q).

We then modify this simulator as follows.

Lazy-Sim2:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Z∗q

(c) invoke (map, 1) to obtain G
(d) invoke (map, D) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗; if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

43

3. To process a group oracle query (add,P1,P2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, π−1(P1) + π−1(P2)) and return the result

4. To process a presignature request:

(a) k ← k + 1

(b) rk
$← Z∗q ;

(c) invoke (map, Rk) to get Rk

(d) tk ← C̄(Rk) ∈ Zq

(e) if tk = 0 then abort

(f) K ← K ∪ {k}; return Rk

5. To process a request to sign mk using presignature number k ∈ K:

(a) K ← K \ {k}
(b) hk ← Hash(mk) ∈ Zq

(c) if hk + tkd 6= 0 then sk ← r−1
k (hk + tkd) else sk

$← Z∗q
(d) substitute s−1

k (hk + tkD) for Rk throughout Domain(π), and abort if any two polynomials
collapse

(e) return (sk, tk)

Again, changes are highlighted. We can view these last two games as operating on the
same sample space. For a polynomial P in the variables D, R1, R2, . . . , let [P] denote the
value obtained by substituting D← d, R1 ← r1, R2 ← r2, For a set S of such polynomials,
we define [S] := {[P] : P ∈ S}. Let Z be the event that in the Lazy-Sim2 game that either

• hk + tkd = 0 for some signing request k, or

• at one of the highlighted tests of the form “P ∈ Domain(π)”, we have P /∈ Domain(π)
but [P] ∈ [Domain(π)].

Suppose we are processing a signing request using the kth presignature, and that Z has
not been triggered before this signing request and hk + tkd 6= 0. Then:

• when the subsitution in Step 5(d) is attempted, the values [P] for P ∈ Domain(π)
are all distinct;

• in particular, the substitution will not fail.

We claim that:

1. these last two games proceed identically unless Z occurs;

2. Pr[Z] = O(N2/q).

44

These two claims together imply that the adversary’s advantage in these two games
differs by O(N2/q).

The second claim essentially follows from the Schwartz-Zippel Lemma, and the following
observations:

• at any point in time in the Lazy-Sim2 game, if the polynomials in Domain(π) involve
the variables D and {Rk}k∈K , then the coefficients of these polynomials are independent
of d and {rk}k∈K .

One can then verify that this last game is completely equivalent to the Symbolic-Sim-
based game in Section 7.2.

C Wagner’s algorithm

We sketch Wagner’s algorithm, adapted to our setting. Let n ≈ log2(q) be the number of
bits of q. Let us assume that we are given a list of random h values and a list of random
h∗ values, where these two lists are each of size 2`. Similarly, we are given a list of random
e values and a list of random e∗ values, where these two lists are each of size 2`

′
. We want

to find h, h∗, e, e∗ such that
h− e = h∗ − e∗. (10)

Here, we have absorbed the value t into the e and e∗ values, since it does not play a
significant role in this analysis.

Let us assume that `′ ≤ n/3 and set ` so that

` ≈ n− `′

2
≥ `′.

Here, we are assuming that while the set of possible key tweaks may be bounded, the
adversary has complete control over how many messages it may hash. Wagner’s algorithm
represents elements of Zq as a balanced residue, in the interval [−q/2,+q/2], expressed
using n-bit two’s complement notation. The first step of the algorithm finds the set S of
all pairs (h, e) such that h and e agree in their high order `′ bits. Similarly, it finds the set
S∗ all pairs (h∗, e∗) such that h∗ and e∗ agree in their high order `′ bits. The expected size
of S and S∗ is roughly

2` · 2`′/2`′ = 2`,

and the time spent finding them (using standard hashing techniques) is O(2`).
For each pair (h, e) ∈ S, the value h−e is a random number in a set S of size about 2n−`

′
.

Similarly for the each pair (h∗, e∗). The expected number of (h, e) ∈ S and (h∗, e∗) ∈ S∗
such that h− e = h∗ − e∗ is roughly

22`/2n−`
′

= 22`−n+`
′ ≥ 1.

So we expect that are such (h, e) ∈ S and (h∗, e∗) ∈ S∗, and we can find them (using
standard hashing techniques) in time O(2`).

So we can find h, h∗, e, e∗ satisfying (10) in time O(2`), where ` ≈ (n− `′)/2. Thus, we
see that as `′ grows, we can beat the birthday attack. In particular, if `′ ≈ n/3, then we

45

get an algorithm that runs in time O(2n/3). It depends on the setting as to whether the
set of valid tweaks can feasibly be as large as 2n/3, but if it is, we have a good chance of
computing a forgery in time O(2n/3).

D Relation to BIP32

In additive key derivation, we add a “tweak” e ∈ Zq. As we have described it, such a tweak
e is chosen from some predetermined set E of bounded size, or from a hash function Hash ′

applied to an identifier id . Of course, we could also insist on both: that e is derived by
applying a hash to a predetermined set of identifiers of bounded size.

In this appendix, we discuss how the BIP32 standard [Wui20] corresponds to these
assumptions.

We first review the BIP32 standard, presented with somewhat different notation and
emphasis. BIP32 makes use of the curve secp256k1 in [Cer10]. This is a curve of prime
order q, where q is of the form

q = 2256 − q′,

where
0 ≤ q′ < 2129.

Because of the special form of q, a randomly chosen integer in the range [0, 2256) will lie
outside the range [0, q) with probability at most 2−(256−129) = 2−127.

BIP32 makes use of HMAC-SHA512, which we denote here simply by HMAC. The
function HMAC takes two inputs:

• the first input is the “key”;

• the second input is the “data”.

In general, both inputs are byte strings of arbitrary length. HMAC produces 64-byte
outputs. It is based on a Merkle-Damg̊ard design with a chaining variable 64 bytes, and a
block size of 128 bytes.

Although HMAC was initially designed as a pseudo-random function, it is often assumed
to be a random oracle (viewing both inputs as inputs to the oracle). [DRST13] show that
HMAC is indifferentiable from a random oracle provided the set of keys is mildly restricted.
Indeed, as shown in [DRST13], if an application only uses only fixed length keys of length
at most 127 bytes, then HMAC is essentially as good as a random oracle. As we will see,
BIP32 satisfies this restriction.

Some notation:

• Let B be the set of all bytes.

• Let S := B∗, the set of all byte strings.

• Let C := B32, the set of all chain codes.

• Let HMAC2 be the function that outputs (a, b), where a is the first 32 bytes of HMAC
and b is the last 32 bytes.

46

• For s ∈ S, let [s] denote the integer for which s is a base-256 representation, and let
[s]q denote the image of [s] in Zq.

• For a group element P ∈ E, let 〈P〉 ∈ S be the compressed SEC1 encoding of P
[Cer09] — note that this is a prefix-free encoding.

For a group element D ∈ E, let us define the function

HD : (Zq × C)× S → Zq × C
((e, c), s) 7→ (e+ [a]q, b), where (a, b) := HMAC2

(
c, 〈D + eG〉 ‖ s

)
.

We then define
H∗D : S∗ → Zq × C

as follows:

H∗D(s1, . . . , s`) :=

{
(0, IV) if ` = 0,

HD
(
H∗D(s1, . . . , s`−1), s`

)
if ` > 0.

Here, IV is an arbitrary, fixed element of C. Let H+
D be H∗D restricted to the domain S+.

This is essentially the BIP32 derivation function. The main difference is that in BIP32,
the function HD will fail if [a] ≥ q or (e + [a]q)G + D = O. Modeling HMAC as a random
oracle, and because of the special form of q, this failure will occur with negligible probability,
so we can safely ignore such failures. The only other difference is that in BIP32, the byte
strings s1, . . . , s` are restricted to being exactly 4 bytes long, but this is not essential for
any security properties (since the compressed SEC1 encoding is prefix free).

Given a master public key D ∈ E and (s1, . . . , s`) ∈ S∗, if H∗D(s1, . . . , s`) = (e, c), then
D + eG is the corresponding public key derived from D via (s1, . . . , s`). If d ∈ Zq is the
master secret key, so that D = dG, then d + e is the corresponding derived secret key.
Observe that any party who knows D and (s1, . . . , s`) (as well as IV) can compute the
derived public key. Note that some use cases of BIP32 consider IV to be private. One such
use case is where users want derived public keys to be unlinkable. However, our analysis
here assumes it is public, which is sufficient for analyzing the security of ECDSA against
forgery using derived public keys.

It would be nice to show that H+
D is indifferentiable from a random oracle (RO), in the

sense defined in [CDMP05]. However, because of extension attacks, we cannot hope to do
this. However, we can still show that H+

D is indifferentiable from a so-called public-use
random oracle (pub-RO), a notion defined in [DRS09]. Essentially, with a pub-RO, the
adversary is allowed to ask for all queries made to the random oracle by any honest parties.
This is sufficient for analyzing the security of ECDSA with tweaks derived via H+

D , as their
are no “secret” inputs to H+

D made by the challenger in the forgery attack game.
It is shown in Theorem 7.1 in [DRS09] that the Merkle-Damg̊ard construction applied

to a pub-RO compression function is itself indifferentiable from a pub-RO. This theorem
does not require any “strengthening” (i.e., a suffix-free encoding of the input).

Since H+
D is exactly the Merkle-Damg̊ard construction applied to the compression func-

tion HD, we could apply this result here, provided we can show that HD is indifferentiable
from a pub-RO, where HMAC is modeled as a random oracle. Unfortunately, we cannot do

47

this without computing discrete logs. Indeed, given an input (c, 〈P〉 ‖ s) to HMAC, an in-
differentiabilty simulator would have to be able to determine e ∈ Zq such that P = D+ eG,
and query the oracle representing HD at the point ((e, c), s), just in case the adversary
would later query HD at this point.

Luckily for us, Theorem 7.1 in [DRS09] actually applies to any compression function that
is indifferentiable from what [DRS09] call a public-use guarded random oracle (pub-
GRO). Roughly speaking, in the pub-GRO indifferentiabilty game for HD, the adversary
does not have unfettered access to the oracle representing HD, but only to an inputs of the
form ((e, c), s), where (e, c) is an allowable pair in the following sense: either (e, c) = (0, IV)
or (e, c) previously output by the oracle. This restriction avoids the problem indicated above.
Indeed, given an input (c, 〈P〉 ‖ s) to HMAC, an indifferentiabilty simulator can test if there
is an allowable pair of the form (e, c) where P = D + eG; if not, we can safely assume that
HD will never be queried at the corresponding point, and so the simulator can just respond
with random junk.

We claim the following: assuming HMAC is modeled as a random oracle, HD is indif-
ferentiable from a pub-GRO. To prove this, one must take into account the special form of
q, which ensures that the uniform distribution on {0, . . . , q− 1} is statistically very close to
the uniform distribution on {0, . . . , 2256 − 1}. One must also make use of the fact that the
compressed SEC1 encoding is prefix free. From this, the claim follows.

From the claim, we may conclude that H+
D is indifferentiable from a pub-RO.

Now consider the function

π1 : Zq × C → Zq
(e, c) 7→ e,

which projects onto its first argument. The function we are ultimately interested in is
Hash ′D := π1 ◦H∗D. This function maps a variable length tuple (s1, . . . , s`) ∈ S∗ to a tweak
e ∈ E. By the above observations, Hash ′D restricted to S+ is indifferentiable from a pub-RO
(and Hash ′D() = 0).

It is also easy to show that Hash ′D is collision resistant, assuming that the function
π1 ◦ HD is collision resistant and that it is hard to find a preimage of 0 under π1 ◦ HD
(the latter condition is needed, since we are not using any “strengthening” in the Merkle-
Damg̊ard construction).

References

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in con-
stant number of rounds of interaction. In P. Rudnicki, editor, Proceedings of
the Eighth Annual ACM Symposium on Principles of Distributed Computing,
Edmonton, Alberta, Canada, August 14-16, 1989, pages 201–209. ACM, 1989.
doi:10.1145/72981.72995.

[BLN+09] D. J. Bernstein, T. Lange, R. Niederhagen, C. Peters, and P. Schwabe. Im-
plementing Wagner’s generalized birthday attack against the SHA-3 round-1
candidate FSB. Cryptology ePrint Archive, Report 2009/292, 2009. https:

//ia.cr/2009/292.

48

http://dx.doi.org/10.1145/72981.72995
https://ia.cr/2009/292
https://ia.cr/2009/292

[BLS01] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pair-
ing. In C. Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Gold Coast, Australia, December 9-13, 2001, Proceedings,
volume 2248 of Lecture Notes in Computer Science, pages 514–532. Springer,
2001. doi:10.1007/3-540-45682-1 30.

[Bro02] D. R. L. Brown. Generic groups, collision resistance, and ECDSA. Designs,
Codes and Cryptography, 35:119–152, 2002.

[CDMP05] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revis-
ited: How to construct a hash function. In V. Shoup, editor, Advances in
Cryptology - CRYPTO 2005: 25th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, vol-
ume 3621 of Lecture Notes in Computer Science, pages 430–448. Springer, 2005.
doi:10.1007/11535218 26.

[Cer09] Certicom Research. Sec 1: Elliptic curve cryptography, 2009. Version 2.0,
http://www.secg.org/sec1-v2.pdf.

[Cer10] Certicom Research. Sec 2: Recommended elliptic curve domain parameters,
2010. Version 2.0, http://www.secg.org/sec2-v2.pdf.

[CMP20] R. Canetti, N. Makriyannis, and U. Peled. UC non-interactive, proactive,
threshold ECDSA. Cryptology ePrint Archive, Report 2020/492, 2020. https:
//ia.cr/2020/492.

[DEF+21] P. Das, A. Erwig, S. Faust, J. Loss, and S. Riahi. The exact security of BIP32
wallets. Cryptology ePrint Archive, Report 2021/1287, 2021. https://ia.cr/
2021/1287.

[DFI22] The DFINITY Team. The internet computer for geeks. Cryptology ePrint
Archive, Report 2022/087, 2022. https://ia.cr/2022/087.

[DJN+20] I. Damg̊ard, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østerg̊ard.
Fast threshold ECDSA with honest majority. Cryptology ePrint Archive, Report
2020/501, 2020. https://ia.cr/2020/501.

[DRS09] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for
practical applications. In A. Joux, editor, Advances in Cryptology - EURO-
CRYPT 2009, 28th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 371–388.
Springer, 2009. doi:10.1007/978-3-642-01001-9 22.

[DRST13] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro. To hash or not to
hash again? (in)differentiability results for H2 and HMAC. Cryptology ePrint
Archive, Report 2013/382, 2013. https://eprint.iacr.org/2013/382.

49

http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/11535218_26
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://ia.cr/2020/492
https://ia.cr/2020/492
https://ia.cr/2021/1287
https://ia.cr/2021/1287
https://ia.cr/2022/087
https://ia.cr/2020/501
http://dx.doi.org/10.1007/978-3-642-01001-9_22
https://eprint.iacr.org/2013/382

[FKP16] M. Fersch, E. Kiltz, and B. Poettering. On the provable security of (EC)DSA
signatures. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 1651–1662. ACM, 2016. doi:10.1145/2976749.2978413.

[GG20] R. Gennaro and S. Goldfeder. One round threshold ECDSA with identifiable
abort. Cryptology ePrint Archive, Report 2020/540, 2020. https://ia.cr/

2020/540.

[GS14] G. Gutoski and D. Stebila. Hierarchical deterministic bitcoin wallets that
tolerate key leakage. Cryptology ePrint Archive, Report 2014/998, 2014.
https://ia.cr/2014/998.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994. Translated from Matematicheskie
Zametki, 55(2):91–101, 1994.

[NIST13] National Institute of Standards and Technology. Digital signature standard
(DSS). Federal Information Processing Publication 186-4, 2013. https://doi.
org/10.6028/NIST.FIPS.186-4.

[NS15] I. Nikolic and Y. Sasaki. Refinements of the k-tree algorithm for the generalized
birthday problem. In T. Iwata and J. H. Cheon, editors, Advances in Cryp-
tology - ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture
Notes in Computer Science, pages 683–703. Springer, 2015. doi:10.1007/978-3-
662-48800-3 28.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
W. Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Kon-
stanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in
Computer Science, pages 256–266. Springer, 1997. doi:10.1007/3-540-69053-0 -
18.

[SPMS02] J. Stern, D. Pointcheval, J. Malone-Lee, and N. P. Smart. Flaws in apply-
ing proof methodologies to signature schemes. In M. Yung, editor, Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, vol-
ume 2442 of Lecture Notes in Computer Science, pages 93–110. Springer, 2002.
doi:10.1007/3-540-45708-9 7.

[Wag02] D. A. Wagner. A generalized birthday problem. In M. Yung, editor, Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, vol-
ume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.
doi:10.1007/3-540-45708-9 19.

50

http://dx.doi.org/10.1145/2976749.2978413
https://ia.cr/2020/540
https://ia.cr/2020/540
https://ia.cr/2014/998
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
http://dx.doi.org/10.1007/978-3-662-48800-3_28
http://dx.doi.org/10.1007/978-3-662-48800-3_28
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/3-540-45708-9_7
http://dx.doi.org/10.1007/3-540-45708-9_19

[Wui20] P. Wuille. Hierarchical deterministic wallets, 2020. https://github.com/

bitcoin/bips/blob/master/bip-0032.mediawiki.

[YY19] T. H. Yuen and S. Yiu. Strong known related-key attacks and the security of
ECDSA. In J. K. Liu and X. Huang, editors, Network and System Security
- 13th International Conference, NSS 2019, Sapporo, Japan, December 15-18,
2019, Proceedings, volume 11928 of Lecture Notes in Computer Science, pages
130–145. Springer, 2019. doi:10.1007/978-3-030-36938-5 8.

51

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
http://dx.doi.org/10.1007/978-3-030-36938-5_8

	1 Introduction
	1.1 Our contributions
	1.1.1 Security proofs
	1.1.2 Attacks
	1.1.3 Mitigations
	1.1.4 Summary of concrete security bounds

	2 The EC-GGM
	3 Properties of the ECDSA conversion function
	4 Notions of security
	4.1 Signature schemes
	4.1.1 Strong unforgeability

	4.2 Hash functions

	5 Proof of security of ECDSA in the EC-GGM
	5.1 A lazy simulation of the signature attack game
	5.2 A symbolic simulation of the signature attack game
	5.3 Security analysis of ECDSA against a symbolic simulator

	6 ECDSA with additive key derivation
	6.1 Alternative analysis

	7 ECDSA with presignatures
	7.1 A lazy simulation of the signature attack game
	7.2 A symbolic simulation of the signature attack game
	7.3 Security of ECDSA with presignatures
	7.4 ECDSA with presignatures and additive key derivation
	7.4.1 How strong are the 4sum1 and 4sum2 properties?
	7.4.2 Alternative analysis

	8 ECDSA with re-randomized presignatures
	8.1 A lazy simulation of the signature attack game
	8.2 A symbolic simulation of the signature attack game
	8.3 Security of ECDSA with re-randomized presignatures
	8.4 ECDSA with re-randomized presignatures and additive key derivation
	8.4.1 Alternative analysis

	9 Homogeneous key derivation
	9.1 Homogeneous key derivation without presignatures
	9.2 Homogeneous key derivation with presignatures
	9.3 Homogeneous key derivation with re-randomized presignatures

	A Proof of [thm-faithful1]Lemma 1
	B Proof of [thm-faithful2]Lemma 2
	C Wagner's algorithm
	D Relation to BIP32
	References

